ЭНРВИК

Пособие по проектированию воздушных линий электропередачи

напряжением 0,38-35 кВ самонесущими изолированными и защищенными проводами

М ——— О —||— Пособие

enervic.ru

- Книга 6.1. Железобетонные опоры ВЛ 10 и 20 кВ с подвеской самонесущих универсальных кабелей EXCEL, FXCEL, AXCES и совместной подвеской СИП-4
 - Том 1. Конструкции одноцепных и двухцепных опор

Обложка

энервик

ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ 0,38-20 кВ С ПРИМЕНЕНИЕМ С САМОНСУЩИХ ИЗОЛИРОВАННЫХ И ЗАЩИЩЕННЫХ ПРОВОДОВ

КНИГА 6

ЖЕЛЕЗОБЕТОННЫЕ ОПОРЫ ВЛ 10-20 кВ С ПОДВЕСКОЙ САМОНЕСУЩИХ УНИВЕРСАЛЬНЫХ КАБЕЛЕЙ EXCEL, FXCEL, AXCES™ И С СОВМЕСТНОЙ ПОДВЕСКОЙ САМОНЕСУЩИХ ИЗОЛИРОВАННЫХ ПРОВОДОВ СИП-4 С ЛИНЕЙНОЙ АРМАТУРОЙ ЭНЕРВИК

Редакция 2

ЭНЕРВИК

Логинова С. Е., Малютин Р. А.,

Консультанты: Логинов А. В., Шаманов Д. Г., Кубасов Т. И.

Пособие по проектированию воздушных линий электропередачи напряжением 0,38-20 кВ с применением самонесущих изолированных и защищенных проводов. Книга 6.1 Железобетонные опоры ВЛ 10-20 кВ с подвеской самонесущих универсальных кабелей ЕХСЕL, FXCEL, AXCESTM и с совместной подвеской самонесущих изолированных проводов СИП-4 с линейной арматурой ЭНЕРВИК, редакция 2, Санкт-Петербург. 2023 г.

Настоящее издание является продолжением одноименной серии пособий по проектированию компании ENSTO.

Настоящее издание посвящено вопросам проектирования воздушных линий электропередачи напряжением 0,38-20 кВ с самонесущими изолированными и защищенными проводами. Высокая эконмическая эффективность использования таких кабелей, достигается за счет значительного повышения надежности электроснабжения потребителей и резкого снижения эксплуатационных затрат по сравнению защищенными и неизолированными проводами. Данная книга содержит материалы по применению самонесущих универсальных кабелей EXCEL, FXCEL и AXCESTM с линейной арматурой ЭНЕРВИК. Технические особенности кабелей этих марок позволяют не только обеспечивать повышение надежности электроснабжения потребителей, но и оперативно решать задачи повышения качества электрической энергии и развития электрической сети в краткосрочном периоде.

В пособии приведены технические решения конструкций опор на железобетонных стойках, а также опор с совместной подвеской ВЛИ 0,4 кВ.

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельца авторских прав.

энервик

Содер	жание
-------	-------

Часть І. Общие сведения	
1. Введение	
2. Общие сведения о воздушных линиях	
электропередачи напряжением 10-20 кВ с универсальными кабелями	1
Часть II. Техническое описание	
1. Основные технические данные:	
2. Универсальные кабели и изолированные провода	
3. Линейная арматура для универсального кабеля и проводов СИП-4	
4. Опоры КВЛ 10-20 кВ	
5. Закрепление опор в грунтах оснований	3
6. Рекомендации по монтажу опор, кабелей EXCEL, FXCEL и AXCES $^{\text{TM}}$	
7. Заземление опор и экранов кабеля	
8. Техника безопасности	
Часть III. Монтажные таблицы КВЛ 10-20 кВ, рассчитанные по ПУЭ 7 издания	
1. Основные положения по расчету опор, кабеля и проводов	
2. Состав таблиц	
3. Таблицы стрел провеса и тяжений	
Часть IV. Расчетные пролеты для опор КВЛ 10-20 кВ, рассчитанные по ПУЭ 7 издания 73	
1. Кабели и расчетные пролеты	7
2. Определение расчетных пролетов для районов с повышенными ветровыми и гололедными	4
нагрузками	
3. Состав таблиц	
4. Таблицы расчетных пролетов	
Часть VI. Конструкции одноцепных железобетонных опор ВЛ 10-20 кВ с подвеской универсаль-	
ного кабеля (EXCEL, FXCEL, AXCESTM) и с совместной подвеской СИП-4 одноцепной ВЛ 0,4	•
кВ	a
Промежуточные опоры ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3	
Переходная промежуточная опора <i>ППБк10(20)-4</i>	
Угловые промежуточные опоры $\mathbf{УПБ}\kappa10(20)$ -1, $\mathbf{УПБ}\kappa10(20)$ -2, $\mathbf{УПБ}\kappa(10)20$ -3	3
Переходная угловая промежуточная опора <i>ПУПБк10(20)-4</i>	3
Анкерные опоры $A \mathcal{E} \kappa 10(20)$ -1, $A \mathcal{E} \kappa 10(20)$ -2, $A \mathcal{E} \kappa 10(20)$ -3	
Переходная анкерная опора $\Pi A \mathcal{B} \kappa 10(20)$ -4	
Угловые анкерные опоры <i>УАБк10(20)-1</i> , <i>УАБк10(20)-2</i> , <i>УАБк10(20)-3</i>	3
Переходная угловая анкерная опора <i>ПУАБк10(20)-4</i>	
Ответвительные анкерные опоры <i>ОАБк10(20)-1</i> , <i>ОАБк10(20)-2</i>	
Переходная ответвительная анкерная опора $\Pi OAE \kappa 10(20)$ -3,	
Концевые анкерные опоры <i>КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3</i>	5
Переходная концевая анкерная опора <i>ПКБк10(20)-4</i>	5
Часть VII. Конструкции двухцепных железобетонных опор ВЛ 10-20 кВ с подвеской универсаль	, –
ного кабеля (EXCEL, FXCEL, AXCESTM) и с совместной подвеской СИП-4 двухцепной ВЛ 0,4	
κB	
Промежуточные опоры $\Pi E \kappa 10(20)$ -5, $\Pi E \kappa 10(20)$ -6	
Переходная промежуточная опора <i>ППБк10(20)-7</i>	
Угловые промежуточные опоры УПБк10(20)-5 , УПБк10(20)-6)
Переходная угловая промежуточная опора ПУПБк10(20)-7, 139	
Анкерные опоры $A \mathcal{B} \kappa 10(20)$ -5, $A \mathcal{B} \kappa 10(20)$ -6	
Переходная анкерная опора <i>ПУАБк10(20)-7</i>	
Угловые анкерные опоры <i>УАБк10(20)-5</i> , <i>УАБк10(20)-6</i>	
Переходная угловая анкерная опора <i>ПУАБк10(20)-7</i>	
Концевые анкерные опоры <i>КБк10(20)-5, КБк10(20)-6</i>	
Переходная концевая анкерная опора <i>ПКБк10(20)-7</i>	
Часть VIII. Отдельные элементы КВЛ 10-20 кВ)
Анкерные опоры со сменой проводов <i>АСБк10(20)-1, АСБк10(20)-2, АСБк10(20)-3 с SZ24</i>	c
Пример перехода СИП-3 в кабель	
Установка разъединителя линейного РЛНД на концевой опоре $KP\kappa 10(20)$ -1, $KP\kappa 10(20)$ -2 174	+
Трансформаторная подстанция напряжением 10/0,4 кВ мощностью от 25 до 63 кВА столбового	

типа <i>СТПк10(20)-1, СТПк10(20)-2</i> Соединение кабеля в петле анкерной опоры <i>АБк10(20)-8, АБк10(20)-9, АБк10(20)-10</i> Соединение кабеля в пролете Насть IX. Стойки опор, металлоконструкции и опорно-анкерные плиты 1. Железобетонная стойка <i>СВ95-3</i> 2. Железобетонная стойка <i>СВ105-5</i> . 3. Железобетонная стойка <i>СВ110-5</i> . 4. Траверса <i>SH188.3R</i> 5. Траверса <i>ТМ78 (ТМ78A)</i>	18 18 18 19 19
Соединение кабеля в петле анкерной опоры <i>АБк10(20)-8</i> , <i>АБк10(20)-9</i> , <i>АБк10(20)-10</i>	18 18 18 19 19
Соединение кабеля в петле анкерной опоры <i>АБк10(20)-8, АБк10(20)-9, АБк10(20)-10</i>	18 18 18 19 19
Соединение кабеля в пролете	18
асть IX. Стойки опор, металлоконструкции и опорно-анкерные плиты 1. Железобетонная стойка CB95-3	18
1. Железобетонная стойка CB95-3	19
2. Железобетонная стойка CB105-5.	19
3. Железобетонная стойка <i>СВ110-5</i>	
4. Траверса <i>SH188.3R</i>	
6. Траверса <i>ТМ78Б</i>	
7. Кронштейн <i>ОТ22а</i>	
8. Оголовок <i>ОГи3</i>	
9. Шина <i>Ши1</i>	
10. Кронштейны <i>КМи-3, КМи-4</i>	
11. Кронштейн <i>SH701R</i>	
12. Кронштейн <i>КР12</i>	
13. Кронштейны <i>У1, У4</i>	
14. Кронштейн <i>РА1</i>	20
15. Кронштейн <i>РА2</i>	20
16. Кронштейн <i>РАЗ</i>	20
17. Кронштейн <i>РА5</i>	20
18. Хомуты <i>X7, X8</i>	20
19. Хомуты <i>X1, X3, X42, X51, X512</i>	20
20. Заземляющий проводник <i>SH705.1R</i>	20
21. Заземляющий проводник <i>SH705R</i>	20
22. Промежуточное звено <i>ПРР-12-1</i>	
23. Стяжка SH702R	
24. Стяжка <i>SH703R</i>	
25. Крюк SOT142R	
26. Крюк SOT142.2R	
27. Коромысла <i>SOT73R</i> , <i>SOT73.1R</i>	
28. Талреп <i>SO155.1R</i>	
29. Опорно-анкерные плиты <i>П-3и</i> , <i>П-4</i>	
Часть Х. Подбор арматуры КВЛ 10-20 кВ.	
1. Поддерживающий зажим <i>SO99</i> и роликовая тележка <i>ST26.99</i>	
2. Поддерживающий зажим <i>SO130 (SO130.2)</i>	
3. Поддерживающий зажим <i>SO150</i>	
4. Поддерживающий зажим SO86 и вставка PK143	
4. Поддерживающий зажим 5000 и вставка ГКТ45	
*	
6. Штыревой изолятор <i>SDI37</i>	
7. Натяжные изоляторы <i>SDI90</i>	
8. Спиральные вязки <i>CO (SO115, SO216)</i>	
9. Натяжные зажимы <i>SO255 (SO256)</i>	
10. Концевые муфты <i>HOTU3</i> и <i>HITU3</i>	
11. Соединительные муфты <i>HJU33</i>	
12. Соединители <i>C-EXCEL u C-AXCES</i>	
13. Кабельные наконечники <i>SML</i>	
14. Защитный кожух	
15. Анкерный автоматический зажим <i>COL52</i>	
16. Скобы SH195R и CK	
17. Ограничитель перенапряжений <i>HE-S</i>	
18. Дистанционный бандаж SO75.100	22
19. Линейный разъединитель SZ24	22

	La
ЭНЕРВИК	Стр.
22. Комплект защиты от птиц SP36.3 Часть XI. Полбор арматуры ВЛИ 0.4 кВ 1. Натяжные зажимы SO234S, (SO118) 2. Поддерживающие зажимы SO303, SO136, SO270 3. Металлюонструкция SO721_RR, SO7_4R, SO729,10R, SO739R, SO776R 4. Пластиковые изделия PER15, SP14, SP15, SP16 5. Соединительные зажимы SJ37, CLL 6. Ответительные зажимы SJ37, SL4 7. Защитные аппараты SE45, SE46, SV29 8. Мачтовые рубильники SZ 9. Кабельные муфты STK, SJK ЛИТЕРАТУРА ЛИТЕРАТУРА	224 225 226 227 228 231 232 233 235 236 238

знервик	ЧАСТЬ І	Стр.
	Часть І	
	Общие сведения	
	Оощис сведения	

1. Введение

Компания ЭНЕРВИК являясь правопреемником компании ENSTO работает над внедрением новых и перспективных решений для распределительных электрических сетей напряжением 0,38 - 35 кВ.

Специалисты компании принимали активное участие во внедрении на территории Российской федерации системы самонесущих изолированных проводов без отдельного несущего проводника СИП-4, универсальных кабелей типа Multi-Wiski, автоматических выключателей нагрузки для секционирующих пунктов ВЛ 10-20 кВ и других технических новинок.

Настоящее издание представляет новое решение — применение самонесущих универсальных кабелей EXCEL, FXCEL и AXCEL $^{\text{TM}}$ для воздушных линий электропередачи напряжением 10-20~kB.

Системы защищенных проводов и кабелей для ВЛ 10-20 кВ

На сегодняшний день в качестве более перспективной и прогрессивной альтернативы неизолированным проводам для ВЛ 10-20 кВ можно рассматривать следующие варианты:

- защищенные провода;
- силовые кабели для ВЛ 10-20 кВ;
- универсальные кабели с раздельными фазами;
- универсальные кабели с фазами в общей оболочке.

Защищенный провод (марки СИП-3, SAX-W) представляет собой одножильный многопроволочный проводник, покрытый защитной оболочкой. Проводник изготавливается из алюминиевого сплава, защитный слой из светостабилизированного сшитого полиэтилена. Провод может изготавливаться с водонабухающим слоем под защитной оболочкой для защиты жилы от атмосферной влаги.

Силовой кабель для воздушных линий электропередачи напряжением 10-20 кВ (марка SAXKA-W) представляет собой жгут из трех однофазных силовых кабелей, скрученных вокруг несущего троса. Токопроводящие жилы выполнены из уплотненного алюминия, несущий трос из стали. Кабели имеют продольную и поперечную защиту от проникновения влаги.

Универсальный кабель с раздельными фазами (марки Multi-Wiski[™], Торсада CH) состоит из трех однофазных скрученных кабелей и несущего троса. Предназначен для монтажа на опорах ВЛ 10-20 кВ, для прокладки в земле в виде подземной кабельной линии, а так же для прокладки по дну искусственных водоемов и естественных водных преград в виде подводной кабельной линии.

Универсальный кабель (EXCEL, FXCEL, AXCELTM) представляет собой силовой кабель с фазными проводниками в общей оболочке. Предназначен для монтажа на опорах ВЛ 10-20 кВ, для прокладки в земле, в виде подземной кабельной линии, а также, для прокладки по дну искусственных водоемов и естественных водных преград в виде подводной кабельной линии.

Силовые кабели для ВЛ 10-20 кВ и универсальные кабели являются менее распространенными на практике, но имеют ряд существенных преимуществ, их применение целесообразно в отдельных случаях при повышенных технических и (или) экологических требованиях к линиям электропередачи в конкретных условиях.

Применение воздушных универсальных кабелей становится все более распространенным техническим решением для ВЛ 10-20 кВ.

Пособие предназначено для инженерно-технических работников, занимающихся проектированием, строительством и эксплуатацией электрических распределительных сетей. А также, для слушателей курсов повышения квалификации, студентов и преподавателей электроэнергетических высших и средних учебных заведений в качестве справочного и учебно-методического и справочного пособия.

ОБЩИЕ СВЕДЕНИЯ	0
·	

2. Общие сведения о воздушных линиях электропередачи напряжением 10-20 кВ с универсальными кабелями

Предпосылки применения

Предпосылками применения универсальных кабелей марок EXCEL, FXCEL и $AXCES^{TM}$ являются:

- быстрый рост электрических нагрузок электроустановок потребителей;
- снижение качества электрической энергии у потребителей в электрических сетях 0,38 кВ;
- низкие темпы развития распределительных сетей 0,38-20 кВ;
- потребности технологического присоединения электроустановок потребителей.

В ситуациях с перечисленными предпосылками, как правило, отсутствуют способы быстрого решения проблем и основным выходом из положения является реконструкция или новое строительство электрических сетей.

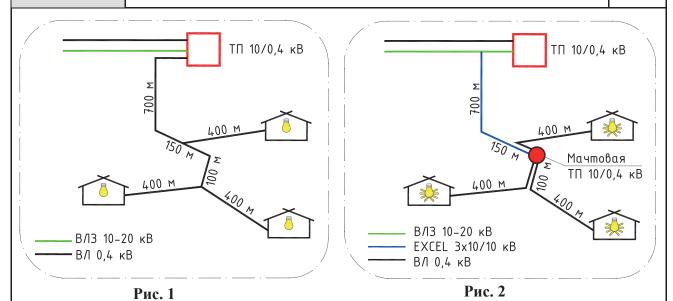
Область применения

Универсальные кабели EXCEL, FXCEL и AXCES $^{\text{TM}}$ дополняют недостающее решение по оперативному решению проблем развития распределительных электрических сетей 0,4-20 кВ в краткосрочном периоде.

Условно область применения кабелей EXCEL, FXCEL и AXCES $^{\text{TM}}$ можно изобразить на примере таблицы 1.

Таблица 1

Период	Массовое строительство	Строительство в сложных условиях
Долгосрочное перспективное развитие	СИП-3	SAXKA-W, Multi-Wiski TM
Оперативное развитие в краткосрочном периоде	СИП-3	EXCEL, FXCEL, AXCES™


Целесообразность применения можно рассмотреть на следующем примере. Линия в с. Поршур (республика Татарстан, Российская Федерация). До реконструкции протяженность линии 0,4 кВ составляла более 1000 м, имелись жалобы потребителей на низкий уровень напряжения.

Оптимальным решением был признан перенос ТП 10 кВ в центр электрических нагрузок, но из-за стесненных условий строительство линии (ВЛЗ) 10 кВ не представлялось возможным. Решением проблемы послужила прокладка самонесущего кабеля EXCEL 3x10 10 кВ по опорам линии 0,4 кВ с совместной подвеской провода СИП-2 сечением 70 мм² для сохранения питания существующих потребителей. Была смонтирована новая мачтовая подстанция 63 кВА. Совместная подвеска кабеля EXCEL 10 кВ и провода ВЛИ-0,4 кВ на опорах 0,4 кВ позволило снизить капитальные затраты на реконструкцию сети.

Монтаж нового участка линии 10 кВ и ТП был осуществлён за один день. В результате сокращения протяженности линии низкого напряжения снизились потери напряжения и восстановился необходимый уровень качества электрической энергии у потребителей.

Схемы примера приведены до модернизации на рис. 1, после модернизации на рис. 2.

Стр.

Применение на КВЛ 10-20 кВ воздушного кабеля EXCEL / FXCEL / AXCES $^{\text{TM}}$ может быть обосновано в следующих случаях:

- в районах с повышенным гололедообразованием;
- для электроснабжения строительных площадок;
- в населенных пунктах, где быстрый рост нагрузки вызывает необходимость переводить сеть на более высокое напряжение;
- в районах со скальным грунтом, где прокладка траншей для кабеля требует больших капиталовложений;
- в лесных районах, где вырубка широких просек, необходимых для ВЛ с неизолированными проводами, невозможна на основании каких-либо условий (сохранение естественного пейзажа, лавиноопасность в горной местности и т.д.);
- в лесных массивах, где ВЛ с неизолированными проводами представляет опасность из-за возможности возникновения пожара при обрыве проводов;
- в районах с повышенным загрязнением от промышленных предприятий или у морских побережий, где загрязнение изоляторов приводит к их частым перекрытиям и увеличению затрат на эксплуатацию;
- в населенных пунктах, находящихся в процессе перестройки, когда нет возможности окончательно установить трассу подземного кабеля;

Устройство

КВЛ 10-20 кВ с универсальными кабелями представляют собой воздушные линии электропередачи, выполненные на опорах с применением деревянных, железобетонных или металлических стоек. На опорах посредством специальной арматуры подвешивается универсальный кабель. Крепление кабеля к опорам осуществляется в основном с помощью крюков, траверс и зажимов. Соединения и ответвления кабелей осуществляются в основном посредством шин и концевых муфт.

Наличие комплексного решения, включающего себя кабели EXCEL, FXCEL и AXCESTM, линейную подвесную и сцепную арматуру, соответствующие инструменты и приспособления позволяют позиционировать данные кабели как целостную систему.

Особенности

В качестве основных особенностей кабелей марок EXCEL, FXCEL и AXCES $^{\text{TM}}$, необходимо отметить:

- высокую механическую прочность;
- малый удельный вес;
- достаточную пропускную способность.

Примечание: Учитывая отсутствие в Правилах устройства электроустановок требований к воздушным линиям 10-20 кВ с применением универсальных кабелей, для проектирования и

ОБЩИЕ СВЕДЕНИЯ

13

строительства ВЛ с применением кабелей марок EXCEL, FXCEL и $AXCES^{TM}$, необходима разработка и согласование специальных технических условий.

Факторы для применения универсальных кабелей

Применение универсальных кабелей целесообразно рассматривать при наличии различных вариантов решений: нового строительства, реконструкции и расширения.

При этом необходимо учитывать следующие факторы:

- возможность сооружения совместно с существующими или перспективными ВЛ низкого напряжения, а также с линиями связи;
 - большая свобода расположения трансформаторных подстанций;
- отсутствие необходимости грозозащитных устройств и отдельных кабельных заходов в ТП:
- более низкая чувствительность к грозовым перенапряжениям по сравнению с неизолированными и изолированными проводами;
- возможность укладки вдоль автомобильных дорог и улиц. Как следствие этого упрощенный надзор за состоянием и трассами, в т.ч. с автомобиля;
- -высокая степень безопасности обеспечивает возможность сооружения ВЛ, где использование неизолированных или изолированных проводов невозможно;
 - снижение стоимости эксплуатации и технического обслуживания кабельной сети;
 - менее заметный внешний вид, меньшие габариты;

Для принятия решений по применению универсального кабеля помимо рассмотрения вариантов технических решений, необходимо выполнение технико-экономического обоснования.

Следует избегать защиты линии, выполненных универсальным кабелем плавкими предохранителями из-за несимметричных токов утечки на землю при повреждении.

Наличие емкостного тока, необходимо учитывать при выборе отключающей способности выключателей.

В случае применения в сети кабеля емкостной ток утечки на землю возрастает в 30-50 раз по сравнению с неизолированными или изолированными проводами. Это накладывает повышение требования к отключающей способности выключателей. Емкостной ток утечки на землю в кабельной сети может быть 0,7 - 2,8 А/км в зависимости от сечения жилы и уровня напряжения. Что, в свою очередь, определяет целесообразность рассмотрения технических мероприятий по компенсации токов утечки на землю.

Целесообразно, учитывать следующую особенность данных универсальных кабелей относительно токов короткого замыкания. По причине малого сечения кабели обладают относительно высоким сопротивлением. Например, у кабеля EXCEL 3x10/10 на 12 или 24 кВ с сечением 10 мм², ток термической стойкости составляет порядка 2 кА в течение 1 с. Это свойство может накладывать ограничения при применении в радиальных линиях.

Но, благодаря этому, можно сказать, что кабель в некоторой мере является самозащищенным, так как, в случае короткого замыкания при относительно высоком сопротивлении и его возрастании при высокой температуре жилы, ток короткого замыкания будет ограничиваться.

Грозовые перенапряжения

Поскольку фазные жилы универсального кабеля заключены в общей оболочке с экраном, то внешнее электрическое поле универсального кабеля практически отсутствует. Это обуславливает меньшую подверженность грозовым перенапряжениям по сравнению с неизолированными или изолированными проводами.

Вероятность отключений из-за наведенных напряжений при применении универсального кабеля значительно уменьшается.

Выполнение ответвлений и концевых заделок

Выполнение концевых заделок, ответвлений или соединение строительных длин можно выполнять на опорных изоляторах или ограничителях перенапряжений (рис. 3).

Для обеспечения возможности отключения участков линии, в т.ч. ответвлений возможно выполнение спусков универсального кабеля с опоры с заводкой в кабельный киоск (кабельный разделитель), стоящий отдельно или на необходимом удалении от опоры для удобства обслуживания.

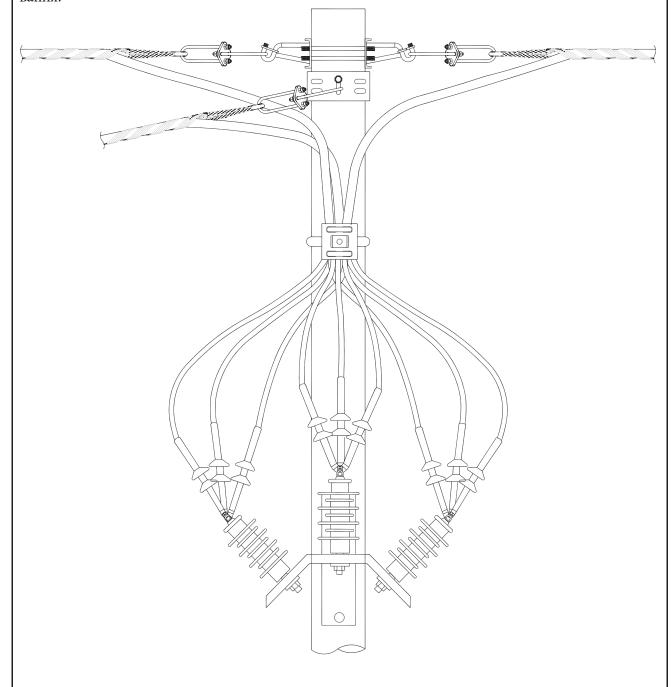
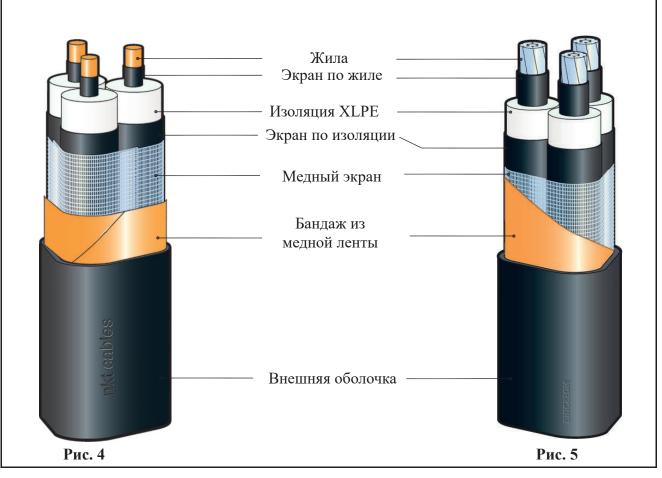


Рис. 3

Возможны случаи, когда для выполнения ответвления, целесообразнее пройти несколько пролетов второй цепью для подключения ответвления на ближайшей концевой заделке.

ОБЩИЕ СВЕДЕНИЯ

15


Конструктивное исполнение универсального кабеля

Универсальные кабели должны обладать необходимыми свойствами и физическими характеристиками, позволяющими их применение в различных средах.

Для подземной прокладки, кабель должен иметь достаточную механическую защиту и обеспечивать легкую укладку в траншеи. Для подводной прокладки кабель должен обладать необходимой плотностью для обеспечения его погружения и исключения плавучести. Поскольку кабели EXCEL, FXCEL и AXCESTM являются самонесущими, то непосредственно несущим элементом являются токоведущие жилы. Конструкция кабеля обеспечивает передачу поперечных усилий к жиле через внешнюю оболочку и систему изоляции не повреждая их. При этом, для обеспечения стойкости к длительным продольным усилиям кабель специально сконструирован таким образом, чтобы разные слои системы изоляции и оболочки не скользили относительно друг друга.

Конструкция универсальных кабелей марок EXCEL и FXCEL (рис. 4), AXCESTM (рис. 5) состоит из следующих элементов:

- токопроводящая жила:
 - EXCEL сплошной холоднотянутый однопроволочный медный проводник;
 - □ FXCEL сплошной холоднотянутый многопроволочный медный проводник;
 - АХСЕЅ™ многопроволочный алюминиевый сплав;
- экран по жиле экструдированный полупроводящий сшитый полиэтилен;
- изоляция XLPE сшитый полиэтилен, сухая вулканизация;
- экран по изоляции экструдированный полупроводящий сшитый полиэтилен, легкосъемный;
 - медный экран сетчатый экран из луженых медных проволок;
 - бандаж из медной ленты;
- внешняя оболочка черный линейный полиэтилен (LLD) низкой плотности, устойчивая к истиранию. Рельефное обозначение: марка кабеля год производства метки длины.

энервик	ДЛЯ ЗАМЕТОК	Стр.

1. Основные технические данные

Универсальный кабель NKT 10-20 кВ

Марки $EXCEL/FXCEL/AXCES^{TM}$;

Сечение EXCEL 3X10/10-10, EXCEL 3X10/10-20;

FXCEL 3X16/10-10, FXCEL 3X16/10-20; AXCESTM 3X70/16-10, AXCESTM 3X70/16-20;

AXCESTM 3X95/25-20;

Стойки опор

Марки железобетонных опор СВ95, СВ105, СВ110;

Длина 9,5, 10,5, 11; Материал стоек опор железобетон;

Срок службы не менее 40 лет по техническим условиям

завода-изготовителя;

 Районы по гололеду
 I, II, III, IV;

 Ветровые районы
 I, II, III, IV;

2. Универсальные кабели и изолированные провода

Универсальные кабели EXCEL, FXCEL, AXCESTM, изготавливаются в соответствии со стандартом IEC 60502-2, HD 620 S2:2010 и соответствуют ГОСТ Р 55025-2012. Испытания электрического типа выполнены в соответствии со стандартом Швеции SS424 14 16 для уровней напряжения, соответствующих кабелям $10~\mathrm{kB}$ и $20~\mathrm{kB}$.

Механические характеристики универсальных кабелей EXCEL, FXCEL и AXCES $^{\text{TM}}$ даны в таблицах 2.1 и 2.2

Электрические характеристики токопроводящих жил кабелей EXCEL, FXCEL и $AXCES^{TM}$ даны в таблицах 2.3 и 2.4.

Таблииа 2.1

Механические характеристики универсального кабеля						
Наименование	Ед. изм.	EXCEL 3x10/10-10	EXCEL 3x10/10-20	FXCEL 3x16/10-10	FXCEL 3x16/10-20	
Диаметр жилы	MM	3,55	3,5	4,7	4,7	
Диаметр жилы по изоляции	MM	11,1	15,3	12,2	17	
Наружный диаметр кабеля	MM	30	40	31	40	
Наружный диаметр окружности	MM	32	42	33	43	
Номинальная толщина изоляции	MM	3,4	5,5	3,4	5,5	
Номинальная толщина оболочки	MM	2,2	2,6	2,2	2,6	
Модуль упругости	Н/мм ²	111000	87000	100000	98000	
Модуль упругости до обледенения	Н/мм²	96000	75000	80000	78000	
Остаточное удлинение (Остаточная деформация)	%	0,5	0,5	0,4	0,5	
Температурный коэффициент линейного удлинения	°C	20x10 ⁻⁶	20x10 ⁻⁶	18x10 ⁻⁶	18x10 ⁻⁶	
Максимальная постоянная расчетная нагрузка	кН	8,1	8,5	11	11	
Ориентировочная кратковременная разрушающая нагрузка	кН	20	22	25	25	
Ориентировочная длительная разрушающая нагрузка	кН	15	15	17	17	
Плотность	кг/м ³	1,4	1,2	1,45	1,3	
Macca	кг/м	0,9	1,2	1,0	1,4	

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

ПАРАМЕТРЫ КАБЕЛЯ

19

Стр.

Таблица 2.2

Механические характеристики универсального кабеля						
Наименование	Ед. изм.	AXCES TM 3x70/16-10	AXCES TM 3x70/16-20	AXCES TM 3x95/25-20		
Диаметр жилы	MM	9,9	9,9	11,6		
Диаметр жилы по изоляции	MM	17	19	20,4		
Наружный диаметр кабеля	MM	41	45	49		
Наружный диаметр окружности	MM	44	49	53		
Номинальная толщина изоляции	MM	3,4	4,5	4,5		
Номинальная толщина оболочки	MM	2,4	2,6	2,8		
Модуль упругости	H/mm^2	64000	64000	61000		
Модуль упругости до обледенения	H/mm ²	55000	55000	47000		
Температурный коэффициент линейного удлинения	°C	23x10 ⁻⁶	23x10 ⁻⁶	23x10 ⁻⁶		
Остаточное удлинение (Остаточная деформация)	%	0,7	0,7	0,8		
Максимальная постоянная расчетная нагрузка	кН	27	27	28		
Ориентировочная кратковременная разрушающая нагрузка	кН	55	56	70		
Ориентировочная длительная разрушающая нагрузка	кН	49	49	51		
Плотность	$\kappa\Gamma/M^3$	1,35	1,25	1,25		
Macca	кг/м	1,5	1,8	2,2		

Таблица 2.3

Электрические характеристики универсального кабеля						
Наимен	нование	Ед. изм.	EXCEL 3x10/10-10	EXCEL 3x10/10-20	FXCEL 3x16/10-10	FXCEL 3x16/10-20
Сечение жилы		MM ²	10	10	16	16
Сечение экрана	a	MM^2	10	10	10	10
Номинальное н	напряжение	кВ	10	20	10	20
Допустимый д	лительный ток:					
в воздухе	жила 65°C	A	71	71	85	85
+25°C	жила 90°C	A	90	90	105	105
+1500	жила 65°C	A	81	81	94	94
в земле +15°C	жила 90°C	A	96	90	105	105
Максимальный ток короткого замыкания (1 сек), при 250°C		кА	2,0	2,0	3,0	3,0
Максимальный замыкания экр	и ток короткого ана	кА	2,0	2,0	2,0	2,0
Ток замыкания на землю		А/км	0,74	1,14	0,90	1,25
Максимальное электрическое сопротивление токопроводящей жилы, +20°C		Ом/км	1,83	1,83	1,15	1,15
Емкость		мкФ/км	0,13	0,10	0,16	0,11
Индуктивности	ь	мГн/км	0,42	0,49	0,40	0,48

знервик

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ПАРАМЕТРЫ КАБЕЛЯ

Стр.

20

Таблица 2.4

Электрические характеристики универсального кабеля						
Наименов	Ед. изм.	AXCES TM 3x70/16-10	AXCES TM 3x70/16-20	AXCES TM 3x95/25-20		
Сечение жилы		MM^2	70	70	95	
Сечение экрана		MM^2	16	16	25	
Номинальное напряжен	ние	кВ	10	20	20	
Допустимый длительны	ый ток:					
D DOOMAN 1250C	жила 65°C	A	160	160	200	
в воздухе +25°C	жила 90°C	A	190	190	240	
P 201410 (P POHO) +150C	жила 65°C	A	160	160	200	
в земле (в воде) +15°C	жила 90°C	A	190	190	240	
Максимальный ток короткого замыкания (1 сек), при 250°C		кА	8,0	8,0	11	
Максимальный ток короткого замыкания экрана		кА	3,2	3,2	5,0	
Ток замыкания на землю		А/км	1,8	2,7	3,3	
Максимальное электрическое сопротивление токопроводящей жилы, +20°C		Ом/км	0,44	0,44	0,32	
Емкость		мкФ/км	0,29	0,21	0,25	
Индуктивность		мГн/км	0,30	0,33	0,32	

SHEDBNK	ТЕХНИЧЕСКОЕ ОПИСАНИЕ	Стр.
	ПАРАМЕТРЫ ПРОВОДОВ	21

В книге предусмотрены технические решения по совместной подвеске универсальных кабелей EXCEL, FXCEL и $AXCES^{TM}$ с самонесущими изолированными проводами без отдельного несущего элемента СИП-4.

Электрические и механические параметры самонесущих проводов СИП-4 приведены в таблице 2.5.

Более подробные сведения о СИП-4 приведены в книге 1 редакция 5 - "Система самонесущих изолированных проводов напряжением до 1 кВ без отдельного несущего элемента".

Таблица 2.5

Параметры проводов СИП-4							
	Электр	ические пара	метры	Механические параметры			
Сечение провода	Электрическое сопротивление жилы постоянному току при температуре 20°C	Допустимый ток нагрузки	Допустимы ток короткого замыкания (односекундный)	Максимальный наружный диаметр провода	Усилие при разры- ве жгута жил, не менее	Расчетная масса	
MM ²	Ом/км	A	кА	MM	кН	кг/км	
4x25	1,200	95	1,6	23	15,9	404	
4x35	0,868	115	2,3	24	21,7	528	
4x50	0,641	140	3,2	29	28,3	718	
4x70	0,443	180	4,5	32	41,9	980	
4x95	0,320	220	5,2	39	53,2	1375	
4x120	0,253	250	5,9	41	65,2	1625	

Допустимый ток нагрузки проводов СИП-4 указан при температуре окружающей среды 25° С, скорости ветра 0.6 м/с и интенсивности солнечной радиации 1000 Вт/м². При расчетных температурах окружающей среды отличающихся от 25° С, необходимо применять поправочные коэффициенты, приведенные в таблице 2.6.

Таблица 2.6

t]	Поправ	очные	коэффі	ициент	ъ при	темпер	атуре о	кружан	ощей ср	еды, °С	1
жилы, °С	-5 и ниже	0	5	10	15	20	25	30	35	40	45	50
70	1,29	1,24	1,2	1,15	1,11	1,05	1,00	0,94	0,88	0,81	0,74	0,67
80	1,24	1,21	1,17	1,13	1,09	1,04	1,00	0,95	0,90	0,85	0,80	0,74
90	1,21	1,18	1,14	1,11	1,07	1,04	1,00	0,96	0,92	0,88	0,83	0,78
130	1,13	1,11	1,09	1,07	1,05	1,02	1,00	0,98	0,95	0,93	0,90	0,87

Допустимый нагрев жил провода СИП-4 при эксплуатации см. в таблице 2.7.

Таблица 2.7

	Режим эксплуатации	Допустимая температура нагрева токопроводящих жил проводов, °C		
		СИП-4	СИПн-4	
1	Нормальный режим	70	70	
2	Режим перегрузки продолжительностью до 8 ч в сутки, но не более 1000 часов за весь срок службы	80	80	
3	Короткое замыкание с протеканием тока к.з. до 5 с	135	135	

3. Линейная арматура для универсального кабеля и проводов СИП-4

Линейная арматура для универсального кабеля

В пособии приведены спецификации линейной арматуры для универсальных кабелей (EXCEL, FXCEL, AXCESTM) 10-20 кВ и самонесущих изолированных проводов СИП-4.

Поддерживающие, натяжные, ответвительные и соединительные зажимы и другие элементы линейной арматуры для крепления универсального кабеля к опорам следует применять по каталогу ЭНЕРВИК "Решения для воздушных линий электропередачи напряжением 0,4-35 кВ" и "Решения для кабельно-воздушных линий напряжением 10 - 35 кВ".

Выбор элементов линейной арматуры, таких как зажимы поддерживающие, натяжные ответвительные и соединительные приведен в спецификациях на чертежах опор КВЛ 10-20 кВ и в данном разделе.

Крепления, ответвления и соединения универсального кабеля необходимо производить следующим образом:

- 1) крепление кабеля магистрали КВЛ на железобетонных опорах:
- на промежуточных опорах с помощью поддерживающих зажимов типа SO99, SO150, SO86+PK143;
 - на угловых промежуточных опорах с углом поворота линии:
 - до 30⁰ с помощью поддерживающих зажимов SO99, SO150, SO86+PK143;

Крепление кабеля магистрали КВЛ на опорах анкерного типа с помощью спиральных вязок PLP120, PLP130, PLP180, PLP200 и талрепа SO155.1.

Крепление поддерживающих и натяжных зажимов к опорам КВЛ 10-20 кВ следует выполнять с помощью крюков:

- бандажные крюки SOT29.10R и SOT39R;
- крюки SOT142R и SOT142.2R.

Бандажные крюки SOT29.10R и SOT39R крепятся к опоре с помощью бандажной ленты COT37.2R и скрепы COT36.2R. Крюки SOT142R и SOT142.2R крепятся к опоре с помощью болтов, которые поставляются в комплекте с крюками.

При выполнении ответвлений от магистрали КВЛ применяются концевые муфты типа НОТU3 10 кВ и 20 кВ. Кабельные муфты HITU3 предназначены для внутренней установки. Для соединения универсального кабеля в воздухе и в земле применяются соединительные муфты типа HJU33 с комплектами соединителей C-EXEL и C-AXCES.

Выбор конкретных типов арматуры - поддерживающих, натяжных зажимов, соединительных и концевых муфт, металлоконструкций и др. необходимо выполнять по таблицам подбора линейной арматуры, размещенным в X части настоящих рекомендаций. В таблицах указаны назначение видов и типов арматуры, их механическая прочность и другие характеристики.

При выборе металлоконструкций, например, крюков или стальных бандажных лент, необходимо обращать особое внимание на их допустимую механическую нагрузку, которая всегда должна быть больше нагрузки, создаваемой тяжением и весом кабеля при конкретных расчетных условиях.

Допускается, не более одного соединения универсального кабеля в пролете.

Соединения кабеля на пересечении с дорогами (железнодорожными путями и т.д.) не допускается.

При правильном выборе линейной арматуры в процессе проектирования линии, в частности при выборе натяжных, поддерживающих зажимов, соединительных и концевых муфт, достигаются следующие цели:

- удобство монтажа;
- сокращение сроков монтажа линии;
- повышение качества монтажных работ;
- уменьшение вероятности возникновения дефектов монтажа

ТЕХНИЧЕСКОЕ ОПИСАНИЕ Стр. ЛИНЕЙНАЯ АРМАТУРА 23

Линейная арматура для изолированных проводов СИП-4

Для подвески и соединения СИП-4 предусмотрено использование арматуры производства компании ЭНЕРВИК.

Крепление, соединение СИП и присоединение к СИП необходимо производить согласно ПУЭ-7 седьмое издание [1].

- 1. Крепление провода магистрали ВЛИ:
- на промежуточных опорах с помощью поддерживающих зажимов типа:
 - SO130, (SO136, SO270) для СИП-4;
- на угловых промежуточных опорах с углом поворота линии до 30° с помощью поддерживающих зажимов:
 - SO130, SO270, SO136, SO99 с раскаточной тележкой ST26.99;
- на угловых промежуточных опорах с углом поворота линии до 60° с помощью поддерживающих зажимов:
 - SO130, SO136, SO99 с раскаточной тележкой ST26.99;
- на угловых промежуточных опорах с углом поворота линии до 90° с помощью поддерживающих зажимов:
 - SO136, SO99 с раскаточной тележкой ST26.99;
- 2. Крепление провода магистрали ВЛИ на опорах анкерного типа с помощью натяжных зажимов:
- SO234S, SO275S, SO276S, SO118.1201S, SO118.1202S, SO117.50952S или аналогичных;
 - 3. Соединение проводов ВЛИ:
 - в пролете с помощью автоматических соединительных зажимов серии CIL;
- в петлях опор анкерного типа допускается соединение с помощью прокалывающих зажимов SLIP22.1, SLIP32.2, SLIW54, SLIW56, SLIW57, SLW58;
 - 4. Соединение заземляющих проводников с помощью плашечных зажимов:
- при соединении заземляющего проводника с изолированной жилой с помощью зажимов SLIP22.127;
- при соединении неизолированных заземляющих проводников между собой с помощью зажимов SL37.2, SL4.21, SL4.25, SL4.26;
 - 5. Ответвление от магистрали осуществляется:
- при выполнении одного ответвления SLIP22.1, SLIP32.2, SLW54, SLIW56, SLIW57, SLIW58;
- при выполнении нескольких ответвлений от одной точки зажимами SLIW66 и SLIW67; Крепление поддерживающих и натяжных зажимов к опорам ВЛИ следует выполнять с помощью крюков и кронштейнов.

Выбор конкретных типов арматуры - подвесных, натяжных, соединительных и ответвительных зажимов, металлоконструкций и др., необходимо выполнять по таблицам подбора линейной арматуры, размещенным в XI части настоящих рекомендаций.

В таблицах указаны назначение видов и типов арматуры, их механическая прочность, токовая нагрузка и другие характеристики.

При выборе металлоконструкций, например, крюков или стальных бандажных лент, необходимо обратить особое внимание на их допустимую механическую нагрузку, которая всегда должна быть больше нагрузки, создаваемой тяжением и весом провода при конкретных расчетных условиях.

Расчетные усилия в поддерживающих и натяжных зажимах, узлах крепления и кронштейнах в нормальном режиме [1] не должны превышать 40% их механической разрушающей нагрузки.

Соединения проводов в пролетах ВЛ следует производить при помощи соединительных зажимов, обеспечивающих механическую прочность не менее 90% разрывного усилия провода. В одном пролете ВЛ допускается не более одного соединения на каждый провод.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ЛИНЕЙНАЯ АРМАТУРА Стр. 24

В пролетах пересечения ВЛ с инженерными сооружениями соединение проводов ВЛ не допускается.

При правильном выборе линейной арматуры в процессе проектирования линии, в частности при выборе натяжных, поддерживающих, соединительных и ответвительных зажимов, достигаются следующие цели:

- удобство монтажа;
- сокращение сроков монтажа линии;
- повышение качества монтажных работ;
- уменьшение вероятности возникновения дефектов монтажа.

Рекомендуется применение ответвительных зажимов, имеющих подпружиненные плашки зажимов, предварительно зачищенных и смазанных на заводе-изготовителе. Также, применение поддерживающих зажимов, не требующих применения гаечных ключей. При выполнении ответвлений следует учитывать, что провода должны располагаться на расстоянии не менее 50 мм от опоры или других конструкций, с целью предотвращения повреждения изоляции провода.

SHEDBNK	ТЕХНИЧЕСКОЕ ОПИСАНИЕ	Стр. 25
	ОПОРЫ КВЛ	23

4. Опоры КВЛ 10-20 кВ

В настоящем пособии разработаны промежуточные, угловые промежуточные, анкерные, концевые, угловые анкерные, ответвительные анкерные и переходные опоры КВЛ 10 - 20 кВ с универсальным кабелем EXCEL, FXCEL и AXCESTM, в том числе с совместной подвеской СИП-4 с линейной арматурой компании ЭНЕРВИК.

Опоры КВЛ 10 - 20 кВ разработаны одноцепные, двухцепные и переходные железобетонные на базе железобетонных стоек и могут применяться в I-IV районах по ветру и гололеду.

Опоры предназначены для применения в населенной и в ненаселенной местностях. Одноцепные опоры КВЛ 10-20 кВ разработаны на базе железобетонных стоек:

- СВ95-3 длиной 9,5 м с расчетным изгибающим моментом 30 кН⋅м;
- СВ105-5 длиной 10,5м с расчетным изгибающим моментом 50 кН⋅м;
- СВ110-5 длиной 11 м и с расчетным изгибающим моментом 50 кН⋅м.

Двухцепные опоры КВЛ 10-20 кВ разработаны на базе железобетонных стоек:

- СВ105-5 длиной 10,5м с расчетным изгибающим моментом 50 кН⋅м;
- СВ110-5 длиной 11 м и с расчетным изгибающим моментом 50 кН⋅м.

Переходные одноцепные и двухцепные опоры КВЛ 10-20 кВ разработаны на базе железобетонных стоек:

• CB110-5 длиной 11 м и с расчетным изгибающим моментом 50 кH·м.

В книге представлены следующие типы опор:

Одноцепные железобетонные опоры ВЛ 10-20 с подвеской универсального кабеля $(EXCEL, FXCEL, AXCES^{TM})$ и с совместной подвеской СИП-4 одноцепной ВЛ 0,4 κB .

•	промежуточные	ПБк10-1, ПБк20-1, ПБк10-2; ПБк20-2,
		ПБк10-3, ПБк20-3, ППБк10-4, ППБк20-4;
•	угловые промежуточные	УПБк10-1, УПБк20-1, УПБк10-2; УПБк20-2,
		УПБк10-3, УПБк20-3, ПУПБк10-4, ПУПБк20-4;
•	анкерные	АБк10-1, АБк20-1, АБк10-2, АБк20-2,
		АБк10-3, АБк20-3, ПАБк10-4, ПАБк20-4;
•	угловые анкерные	УАБк10-1, УАБк20-1, УАБк10-2, УАБк20-2,
		УАБк10-3, УАБк20-3, ПУАБк10-4, ПУАБк20-4;
•	ответвительные анкерные	ОАБк10-1; ОАБ20-1; ОАБк10-2; ОАБк20-2;
		ОАБк10-3; ОАБ20-3; ПОАБк10-4, ПОАБк20-4;
•	концевые	КАБк10-1, КАБк20-1, КАБк10-2, КАБк20-2,
		КАБк10-3, КАБк20-3, ПКАБк10-4, ПКАБк20-4.

<u>Двухцепные железобетонные опоры ВЛ 10-20 с подвеской универсального кабеля (EXCEL, FXCEL, AXCESTM) и с совместной подвеской СИП-4 двухцепной ВЛ 0,4 кВ.</u>

•	промежуточные	ПБк10-5, ПБк20-5, ПБк10-6, ПБк20-6,
		ППБк10-7, ППБк20-7;
•	угловые промежуточные	УПБк10-5, УПБк20-5, УПБк10-6, УПБк20-6,
		ПУПБк10-7, ПУПБк20-7;
•	анкерные	АБк10-5, АБк20-5, АБк10-6, АБк20-6,
	-	ПАБк10-7, ПАБк20-7;
•	угловые анкерные	УАБк10-5, УАБк20-5, УАБк10-6, УАБк20-6,
	-	ПУАБк10-7, ПУАБк20-7;
•	концевые	КАБк10-5, КАБк20-5, КАБк10-6, КАБк20-6,
		ПКАБк10-7, ПКАБк20-7.

SUSUBAR	ТЕХНИЧЕСКОЕ ОПИСАНИЕ					
	ОПОРЫ КВЛ	26				

<u>Отдельные элементы с подвеской универсального кабеля (EXCEL, FXCEL, AXCES</u> TM)

анкерные опоры со сменой проводов
 АСБк10(20)-1, АСБк10(20)-2,

АСБк10(20)-3

установка разъединителя линейного РЛНД КРк10(20)-1, КРк10(20)-2

на концевой опоре

трансформаторная подстанция напряжением СТПк10(20)-1, СТПк10(20)-2

10/0,4 кВ мощностью от 23 до 63 кВА столбового типа

• Соединение кабеля в петле анкерной опоры АБк10(20)-8, АБк10(20)-9,

АБк10(20)-10

Типы опор

П - промежуточная;

УП - угловая промежуточная;

А - анкерная;

УА - угловая анкерная;

ОА - ответвительная анкерная;

КА - концевая анкерная;

ПП - переходная промежуточная;

ПУП - переходная угловая промежуточная;

ПА - переходная анкерная;

ПУА - переходная угловая анкерная;

ПОА - переходная ответвительная анкерная;

ПКА - переходная концевая анкерная.

Обозначение опор

Шифры опор составлены из двух частей, соответственно указывающих:

- 1) вид, материал опоры и напряжение ВЛ;
- 2) типоразмер опоры.

Например, УПБк10-1 - угловая промежуточная опора, железобетонная, с универсальным кабелем, ВЛ 10 кВ, первый типоразмер.

АБк20-2 - анкерная опора, железобетонная, с универсальным кабелем, ВЛ 20 кВ, второй типоразмер.

Промежуточные опоры нормального габарита и повышенного для переходов через линии связи, ВЛ, дороги и других сооружений разработаны одностоечной конструкции. Опоры анкерного типа нормального и повышенного габарита разработаны с подкосной конструкцией.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ВЫБОР ОПОР

Стр. 27

Марки железобетонных стоек и опор КВЛ 10-20 кВ с совместной подвеской СИП-4

Таблица 2.8

Тип опоры	Одноцепные опоры КВЛ с совместной подвеской СИП		Переходные одноцепные опоры КВЛ с совместной подвеской СИП-4		Двухцепнь КВЛ с сов подвеско	местной	Переходные двухцепные опоры КВЛ с совместной подвеской СИП-4	
	Марка опоры	Стойка	Марка опоры	Стойка	Марка опоры	Стойка	Марка опоры	Стойка
ая	ПБк10-1	CB95-3	ППБк10-4	CB110-5	ПБк10-5	CB105-5	ППБк10-7	CB110-5
Промежуточная опора	ПБк10-2	CB105-5	ППБк20-4	CB110-5	ПБк10-6	CB110-5	ППБк20-7	CB110-5
ежуто	ПБк10-3	CB110-5			ПБк20-5	CB105-5		
Теж	ПБк20-1	CB95-3			ПБк20-6	CB110-5		
wod	ПБк20-2	CB105-5						
	ПБк20-3	CB110-5						
ая	УПБк10-1	CB95-3	ПУПБк10-4	CB110-5	УПБк10-5	CB105-5	ПУПБк10-7	CB110-5
ВНГ6	УПБк10-2	CB105-5	ПУПБк20-4	CB110-5	УПБк10-6	CB110-5	ПУПБк20-7	CB110-5
утс утс	УПБк10-3	CB110-5			УПБк20-5	CB105-5		
Угловая Промежуточная опора	УПБк20-1	CB95-3			УПБк20-6	CB110-5		
Noc	УПБк20-2	CB105-5						
	УПБк20-3	CB110-5						
	АБк10-1	CB95-3	ПАБк10-4	CB110-5	АБк10-5	CB105-5	ПАБк10-7	CB110-5
K	АБк10-2	CB105-5	ПАБк20-4	CB110-5	АБк10-6	CB110-5	ПАБк20-7	CB110-5
Анкерная	АБк10-3	CB110-5			АБк20-5	CB105-5		
нке	АБк20-1	CB95-3			АБк20-6	CB110-5		
Ā	АБк20-2	CB105-5						
	АБк20-3	CB110-5						
	УАБк10-1	CB95-3	ПУАБк10-4	CB110-5	УАБк10-5	CB105-5	ПУАБк10-7	CB110-5
ловая ная опора	УАБк10-2	CB105-5	ПУАБк20-4	CB110-5	УАБк10-6	CB110-5	ПУАБк20-7	CB110-5
)Ва5	УАБк10-3	CB110-5			УАБк20-5	CB105-5		
Угловая грная о	УАБк20-1	CB95-3			УАБк20-6	CB110-5		
Уг	УАБк20-2	CB105-5						
AH	УАБк20-3	CB110-5						
<u> </u>	ОАБк10-1	CB95-3	ПОАБк10-4	CB110-5				
ьна	ОАБк10-2	CB105-5	ПОАБк20-4	CB110-5				
гел	ОАБк10-3	CB110-5						
гвител	ОАБк20-1	CB95-3						
Ответвительная	ОАБк20-2	CB105-5						
O ₁	ОАБк20-3	CB110-5						
	КАБк10-1		ПКАБк10-4	CB110-5	КАБк10-5	CB105-5	ПКАБк10-7	CB110-5
В	КАБк10-2		ПКАБк20-4				ПКАБк20-7	CB110-5
Концевая	КАБк10-3	CB110-5			КАБк20-5	CB105-5		
онцева	КАБк20-1	CB95-3			КАБк20-6	CB110-5		
Kc	КАБк20-2	CB105-3						
	КАБк20-3	CB110-5						

SHEDBUK	ТЕХНИЧЕСКОЕ ОПИСАНИЕ	Стр.
	ЗАКРЕПЛЕНИЕ ОПОР В ГРУНТЕ	20

5. Закрепление опор в грунтах оснований

Закрепление опор в грунтах рассмотрено для грунтов, предусмотренных приложением 1 СНИП 2.02.01-83 "Основания зданий и сооружений".

Расчет прочности закрепления промежуточных опор выполнен в соответствии с "Руководством по проектированию опор и фундаментов линий электропередачи и распределительных устройств подстанций напряжением выше 1 кВ" (Энергосетьпроект, N3041 тм, 1977).

Закрепление промежуточных опор ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3, ПБк10(20)-5, ПБк10(20)-6, ППБк10(20)-4, ППБк10(20)-7 в грунте предусматривается, как правило, без анкерных плит в сверленные котлованы диаметром 350-450 мм:

- с глубиной 2,2 м (со стойками СВ95);
- c глубиной 2,5 м или 2,8 м (со стойками CB105 и CB110).

Результаты расчета несущей способности закрепления промежуточных опор в грунте, Мгр представлены в таблицах $2.9 \div 2.11$.

Величины расчетных изгибающих моментов Мр, действующих на промежуточные опоры, равны:

$$Mp = K \cdot (L_{\phi a \kappa T} / L_{BeTp}), \kappa H \cdot M,$$

где К принимается 30 - для стоек СВ95 и 50 - для стоек СВ110-5 (СВ105-5);

Lветр. - ветровой пролет (см. таблицы 4.4. 4.7, 4.10, 4.13, 4.16);

Lфакт. - принятый пролет в конкретном проекте KBЛ.

Первоначально проверяется возможность закрепления опоры на глубину 2,2 (2,5) м. При условии, что Мгр для конкретного грунта по табл. 2.9 и 2.10 больше величины Мр, то опора закрепляется на глубину 2,2 (2,5) м. В случае Мгр < Мр, опора закрепляется в грунт на глубину 2,5 (2,8) м, при этом необходимо уменьшить длину пролета или принять дополнительные меры по усилению закрепления опор в грунтах, что рассматривается при конкретном проектировании.

При установке опор подкосных конструкции требуется установка во всех грунтах (кроме "слабых") железобетонных плит П-3и (П-4). Плита П-3и (П-4) крепится к стойке (к подкосу) с помощью стяжки SH702 для стоек CB95-3 и CB110-5 или стяжки SH703 для стоек CB105-5. При этом, необходимо производить гравийно-песчаные подсыпки толщиной 0,5 м над плитой стойки опоры, с тщательным послойным трамбованием. Под подкос песчано-гравийная подсыпка не требуется.

В "слабых грунтах" (глины и суглинки с консистенцией $0.5 < I_L < 0.75$; супеси $0.5 < I_L < 1$) требуются дополнительные меры по усилению закрепления опор в грунтах, что рассматривается при конкретном проектировании.

Таблица 2.9

Несущая способность закрепления в грунтах промежуточных опор ПБк10-1, ПБк20-1, на опрокидывание, Мгр, кН·м, при глубине заделки 2,2 м.

Глубина заделки, h			2,2 м							
11		Коэффициент пористости грунта "е"								
паимен	ование и виды грунтов	0,45	0,55	0,65	0,75	0,85	0,95	1,05		
	Гравелистые и крупные	63	49	41	-	-	-	-		
Пески	Средней крупности	51	44	35	-	-	-	-		
Пески	Мелкие	49	41	30	22	-	-	-		
	Пылеватые	45	38	28	20	-	-	-		
	$0 < I_L \le 0.25$	56	47	39	31	-	-	-		
Супеси	$0.25 < I_L \le 0.75$	45	37	31	25	20	-	-		
	$0 < I_L \le 0.25$	72	57	47	39	34	28	-		
Суглинки	$0.25 < I_L \le 0.5$	64	54	45	38	30	24	-		
	$0.5 < I_L \le 0.75$	-	-	31	26	21	18	15		
	$0 < I_L \le 0.25$	-	110	88	68	57	46	38		
Глины	$0.25 < I_L \le 0.5$	-	-	69	58	48	39	30		
	$0.5 < I_L \le 0.75$	-	-	39	34	28	24	20		

	Г
ТЕХНИЧЕСКОЕ ОПИСАНИЕ	Стр. 20
ЗАКРЕПЛЕНИЕ ОПОР В ГРУНТЕ	29

Таблица 2.10

Несущая способность закрепления в грунтах промежуточных опор ПБк10(20)-2, ПБк10(20)-3, ПБк10(20)-5, ПБк10(20)-6, ППБк10(20)-4, ППБк10(20)-7 на опрокидывание, Мгр, кН·м, при глубине заделки 2,5 м.

Глубина заделки, h		2,5 м							
Наименование и виды грунтов		Коэффициент пористости грунта "е"							
		0,45	0,55	0,65	0,75	0,85	0,95	1,05	
Пески	Гравелистые и крупные	92	72	59	-	-	-	-	
	Средней крупности	75	64	50	-	-	-	-	
	Мелкие	70	58	42	30	-	-	-	
	Пылеватые	64	53	39	28	-	-	-	
Супеси	$0 < I_L \le 0.25$	78	66	55	43	-	-	-	
	$0.25 < I_L \le 0.75$	64	51	43	34	26	-	-	
Суглинки	$0 < I_L \le 0.25$	99	78	64	53	46	38	-	
	$0.25 < I_L \le 0.5$	87	74	61	51	40	32	-	
	$0.5 < I_L \le 0.75$	-	-	41	35	28	24	20	
Глины	$0 < I_L \le 0.25$	-	150	119	91	76	61	50	
	$0.25 < I_L \le 0.5$	-	-	92	77	64	51	39	
	$0.5 < I_L \le 0.75$	-	-	51	45	37	31	25	

I_L - показатель текучести.

Таблица 2.11

Несущая способность закрепления в грунтах промежуточных опор ПБк10(20)-2, ПБк10(20)-3, ПБк10(20)-5, ПБк10(20)-6, ППБк10(20)-4, ППБк10(20)-7 на опрокидывание, Мгр, кН·м, при глубине заделки 2,8 м.

Глубина заделки, h		2,8 м							
Наименование и виды грунтов		Коэффициент пористости грунта "е"							
		0,45	0,55	0,65	0,75	0,85	0,95	1,05	
Пески	Гравелистые и крупные	136	106	87	-	-	-	-	
	Средней крупности	110	94	72	-	-	-	-	
	Мелкие	102	85	61	43	-	-	-	
	Пылеватые	93	77	56	40	-	-	-	
Супеси	$0 < I_L \le 0.25$	111	93	77	60	-	-	-	
	$0.25 < I_L \le 0.75$	91	73	60	47	37	-	-	
Суглинки	$0 < I_L \le 0.25$	137	108	90	74	64	52	-	
	$0.25 < I_L \le 0.5$	121	103	85	71	55	45	-	
	$0.5 < I_L \le 0.75$	-	-	58	48	39	33	27	
Глины	0 < I _L ≤ 0,25	-	207	164	125	104	83	68	
	$0.25 < I_L \le 0.5$	-	-	126	106	88	70	53	
	$0.5 < I_L \le 0.75$	-	-	70	61	50	42	33	

 I_L - показатель текучести.

Стр.

РЕКОМЕНДАЦИИ ПО МОНТАЖУ КАБЕЛЯ

6. Рекомендации по монтажу опор, кабелей EXCEL, FXCEL II AXCELTM

Монтаж универсального кабеля на опорах ВЛ 10-20 кВ, прокладка в земле в виде подземной кабельной линии, прокладка по дну искусственных водоемов и естественных водных преград в виде подводной кабельной линии не отличается от монтажа и прокладки других кабелей.

Монтаж кабеля рекомендуется производить с соблюдением правил, приведенных в действующих нормативно-технических и методических документах, с применением специальной линейной арматуры, механизмов, приспособлений и инструмента, при температуре окружающего воздуха не ниже минус 10°C.

Инструменты и материалы

Для монтажа универсального кабеля на КВЛ 10-20 кВ необходимы следующие основные приспособления, инструменты и материалы:

- лебедка ST116.1 с тормозным устройством и с тяговым усилием не менее 1000 кг;
- трос-лидер ST206.3 (с диаметром не менее 8 мм, длиной около 500 м);
- монтажные ролики ST26.1 (ST26.11), ST26.22, ST26.33 количество роликов для сооружения определяется проектом;
 - динамометр ST112.2 (при необходимости) рассчитанный на:
 - □ 500 кгс (5 кH) для EXCEL, FXCEL;
 - □ 1500 кгс (15 кH) для AXCES.
 - монтажный чулок СТ103. (конкретная марка выбирается по диаметру кабеля);
 - вертлюг СТ104 для соединения монтажного чулка с петлей трос-лидера;
- один или несколько кронштейнов-кранов с ручными лебедками, устанавливаемых на вершины опор для укладки кабеля в поддерживающий зажим;
 - монтажный зажим, рассчитанный на усилие:
 - □ EXCEL и FXCEL 5 кH;
 - □ AXCES 15 кH.
 - набор монтерского инструмента.

Подготовка кабеля к раскатке

Наиболее важным этапом в процессе монтажа является момент раскатки прохождения кабеля и монтажного чулка по монтажным роликам или в поддерживающих зажимах (в случае применения вместо монтажных роликов поддерживающих зажимов). Для облегчения прохождения кабеля по монтажным роликам, рекомендуется перед закреплением монтажного чулка обрезать концы кабеля на различную длину согласно рис. 6 и придать каждой жиле конусную форму или сделать на ней фаску, срезав ножом все острые кромки, во избежание острых краев, что упрощает процесс раскатки.

Рис. 6

Закрепить конец монтажного чулка несколькими слоями изоляционной ленты. Убедиться в отсутствии узлов, коушей, проволочных ушек и прочих подобных элементов, которые могут зацепиться во время раскатки кабеля.

Во избежание повреждения оболочки кабеля, раскатка универсального кабеля должна производится исключительно по воздуху, через раскаточные ролики ST26.1 (ST26.22). Ролик крепится на крюк таким образом, чтобы ролик открывался в направлении перекладки

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

РЕКОМЕНДАЦИИ ПО МОНТАЖУ КАБЕЛЯ

кабеля в поддерживающий зажим для исключения необходимости снятия ролика при пере-

Стр.

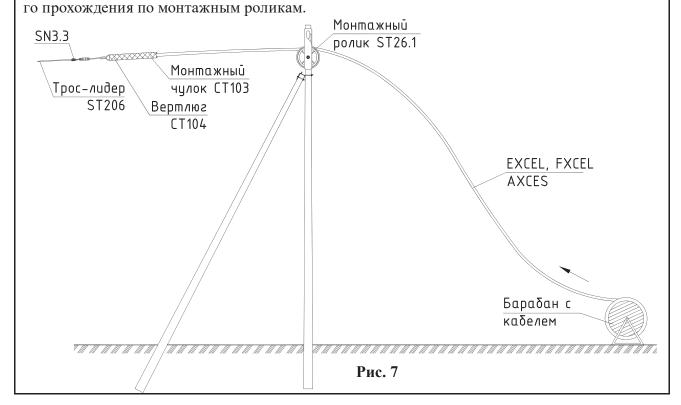
31

кладке кабеля из ролика в зажим. Первым на крюк подвешивается поддерживающий зажим, затем раскаточный ролик.

Во избежание повреждения оболочки кабеля, необходимо принять меры при их раскатке и регулировке, исключить касание кабеля земли, бетонных и металлических конструкций, крупных ветвей деревьев, соблюдать допустимые минимальные радиусы изгиба кабеля.

Допустимые минимальные радиусы изгиба кабеля:

- □ EXCEL 3x10/10-10 250 мм; EXCEL 3x10/10-20 350 мм;
- □ FXCEL 3x16/10-10 250 мм; FXCEL 3x16/10-20 350 мм;
- $^{\rm o}$ AXCESTM 3x70/16-10 360 мм; AXCESTM 3x70/16-20 390 мм; AXCESTM 3x95/25-20 430 мм:


Рекомендуемая скорость раскатки не более 30 м/мин., с учетом возможности быстрой остановки, в случае возникновения препятствий раскатке. Раскатка универсального кабеля должна производится под тяжением, чтобы исключить провисание кабеля в пролете и касания им земли. Для этого, приемно-отдающее устройство должно быть оснащено тормозным механизмом. Операцию раскатки кабеля должно проводится специально обученной бригадой строительно-монтажной или эксплуатационной организацией. При этом, необходимо строго соблюдать монтажные усилия и стрелы провеса при регулировке кабеля и не допускать перетяжку кабеля.

Расположение барабана

На расположение барабана с кабелем влияют несколько факторов. Одним из главных факторов является возможность доставки барабана к нужному месту. Протягивать кабель удобнее по склону, поэтому барабан следует разместить в самой высокой точке. В случае, если перепад высот большой, то при протягивании кабеля вниз будет сложно затормозить (остановить) барабан.

При наличии больших углов поворота трассы, предпочтительнее, чтобы эти углы были в конце линии.

Установить на первой (концевой) опоре монтажный ролик (см. рис. 7). Кабель следует сматывать с барабана сверху (см. рис. 7). В процессе раскатки кабеля, необходимо постоянно вести наблюдение за плавностью сматывания кабеля с барабана и ровно-

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

РЕКОМЕНДАЦИИ ПО МОНТАЖУ КАБЕЛЯ

32

Раскатка кабеля

В процессе раскатки кабеля, барабан не должен вращаться быстрее разматывания кабеля, в противном случае, необходимо затормозить барабан. В случае резкой остановки натягивания кабеля вращение барабана, необходимо остановить, иначе кабель может размотаться под барабан и повредиться.

При протягивании кабеля по монтажным роликам и поддерживающим зажимам, должно быть обеспечено достаточное пространство для кабеля с монтажным чулком. Как вариант, для упрощения натягивания в момент раскатки, можно покачивать кабель по мере прохождения через поддерживающий зажим. Так же, следует следить за натяжкой натяжного троса. В случае чрезмерного тяжения троса раскатку кабеля необходимо остановить для выяснения причины. Продолжать раскатку только после устранения причины, препятствующей нормальной раскатке кабеля.

При раскатке кабеля рекомендуется исключить соприкасание с землей (грунтом). В случае неизбежности из-за больших пролетов, необходимо проверить трассу ВЛ на отсутствие острых предметов (например, разрушенных камней и т.п.) и если необходимо, то предварительно можно для защиты кабеля уложить доски, опорные подмости, брезентовые или другие коврики.

При больших углах поворота трассы ВЛ, рекомендуется использовать двойные ролики соответствующего размера для снижения требуемых усилий натяжения, снижения вероятности проворачивания опоры.

<u>Монтаж на концевой опоре</u>

Для сокращения времени монтажа, рекомендуется спиральный натяжной зажим на кабель установить на земле и поднимать вверх на опору подготовленный конец кабеля.

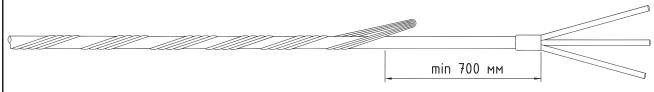
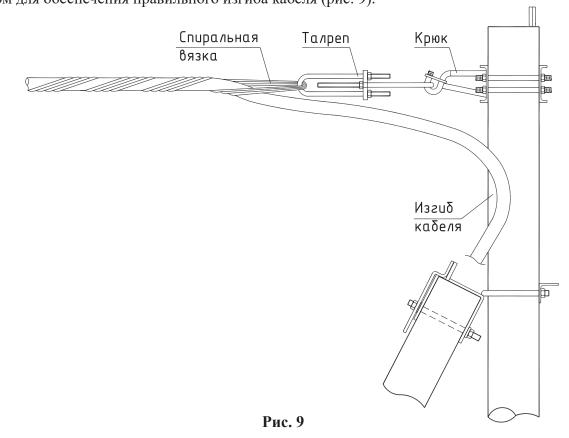


Рис. 8

Натяжной спиральный зажим и концевая заделка кабеля устанавливаются в соответствии с инструкциями. Необходимо, учесть расстояние между началом спирального зажима и точкой снятия оболочки кабеля, которое должно быть не менее 700 мм (рис. 8).

Также, следует обратить внимание на то, чтобы кабель выходил из натяжного спирального зажима ровно, для предотвращения сильного изгиба в этом месте. Конструкция спирального натяжного зажима устроена так, что после монтажа он растягивается, что дает преимущества в следующих случаях:

- при больших нагрузках, возникающих при падении деревьев на кабельную линию, снегопаде, обледенении и т.п.;
- в случае, когда установлен первый спиральный натяжной зажим на концевой опоре, устанавливается другой спиральный зажим на второй концевой опоре, при этом растягивается тот спиральный зажим, который установлен первым.


Кабели могут смещаться от опор, поэтому они должны иметь достаточный запас. При маленьком запасе, существует вероятность того, что натяжение будет передаваться другим компонентам, (например, плетенному экрану, кабельным наконечникам и грозозащитным разрядникам. Во избежания этого, кабель необходимо крепить таким образом, чтобы изгиб на кабеле находился между натяжным спиральным зажимом и опорой (рис. 9).

33

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Петля спирального натяжного зажима крепиться к талрепу, а талреп крепиться к крюку установленному на опоре (рис. 9). При монтаже кабеля AXCES™, рекомендуется использовать натяжной монтажный зажим, поднять кабель закрепленным сверху на опоре подъемником для обеспечения правильного изгиба кабеля (рис. 9).

Для облегчения монтажа рекомендуется натяжные монтажные зажимы применять совместно с дополнительными спиральными зажимами. Натяжные спиральные зажимы можно применять многократно, так как они практически не повреждают оболочку кабеля.

При использовании натяжных монтажных зажимов для крепления кабеля AXCES, необходимо обратить внимание на их усилие, которое не должно превышать усилие натяжения, в противном случае, может повредиться оболочка кабеля.

Натяжные монтажные зажимы рекомендуется использовать в течение короткого промежутка времени. В случае, если кабель испытывает натяжение в течение длительного времени, рекомендуется использовать натяжные спиральные вязки.

Регулировку (натяжение кабеля) стрелы провеса, необходимо производить с помощью натяжного спирального зажима или монтажного зажима, который устанавливается на расстоянии не менее 1 метр от конца кабеля, в противном случае кабель может проскальзывать.

Натяжение и регулировка стрелы провеса

Натяжение и регулировка стрелы провеса производится следующими операциями. Установить монтажный ролик на концевой опоре, это позволит производить натяжение с земли. Произвести натяжку кабеля с помощью ручной лебедки (автомобильной лебедки) по стрелам провеса, указанным в таблицах $3.6 \div 3.37$. Кабели EXCEL и FXCEL допускается немного перетянуть, дать им повисеть около 15 минут для снижения остаточной деформации от намотки на барабан. Не допускается натягивать кабель полностью на долгое время (больше 2 часов) только натяжным монтажным зажимом, если в нем закреплена часть кабеля, который будет в дальнейшем в эксплуатации.

Контактные поверхности натяжных монтажных зажимов предназначены для кратковременного использования, в противном случае может повредиться оболочка кабеля.

34

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

РЕКОМЕНДАЦИИ ПО МОНТАЖУ КАБЕЛЯ

При установке натяжных спиральных зажимов, рекомендуется натянуть кабель и отметить их точки крепления. После натягивания, опустить кабель на землю, закрепить натяжные спиральные зажимы и установить концевую муфту, после поднять кабель на опору.

Спиральные натяжные вязки для кабеля AXCESTM из-за своей длины практически всегда устанавливаются на опоры с люльки подъемника. Если есть возможность установить спиральные натяжные зажимы на земле, то рекомендуется осуществить их на земле.

Для упрощения установки натяжных спиральных вязок, допускается разделить последний виток и закреплять отдельно по 2-3 провода.

Регулировка натяжения кабеля выполняется следующим путем. Сначала производится анкерное крепление на одном конце, после чего натяжение регулируется лебедкой и производится анкеровка на другом конце. Натяжение кабеля может контролироваться путем измерения стрелы провеса кабеля или динамометром.

Перекладывание кабеля выполняется с помощью кронштейна-крана с ручной лебедкой, закрепляемого на вершине опоры.

При работе необходимо защитить оболочку универсального кабеля тканью от повреждения крюком крана.

Длина кабеля не всегда равна длине участка. Поэтому, в ряде случаев необходимо соединить кабель в петле анкерной опоры, что выполняется только на земле и с не натянутым кабелем (согласно чертежу на стр. 184) или соединить кабель в пролете (согласно чертежу на стр. 187).

Место соединения универсального кабеля на КВЛ должно быть доступным, то есть располагаться над ровным местом, но не над рекой, дорогой и др.

Соединение кабеля не должно проходить по роликам при натяжке кабеля.

Как правило, на анкерном участке имеются пролеты разной длины, монтаж кабеля должен выполняться по среднему пролету. Визирование стрелы провеса рекомендуется выполнять в пролете, примерно равном по величине среднему пролету и расположенном вдали от тягового механизма.

При монтаже анкерных и угловых опор с подкосами, рекомендуется следующие операшии:

- бурение котлованов диаметром не менее 650 мм под стойку и под плиту подкоса;
- трамбовка дна котлована под стойку; при необходимости выполняется песчано-гравийная подсыпка толщиной 0,5 м (см. раздел 4, Пояснительной записки);
 - установка стойки с прикрепленной плитой Пи-3 в котлован;
 - протяжка трос-лидера по раскаточным роликам;
 - раскатка и натяжка кабеля;
 - дополнительная трамбовка грунта в котлованах;

При прокладке универсальных кабелей под землей, технология прокладки идентична другими укладываемыми кабелями под землю, принимаются те же меры предосторожности, что и для других кабелей. Универсальные кабели немного жестче из-за более прочных проводников по сравнению со стандартными подземными кабелями. В связи с этим, необходимо кабель удерживать, вдавливая в траншею.

При прокладке кабеля под водой, важно, чтобы плотность кабеля была достаточной для его затопления. Плотность 1,2 кг/дм³ оказывается достаточной, чтобы кабель затонул. Все универсальные кабели имеют плотность, превышающий 1,2 кг/дм³, что обеспечивает их пригодность для укладки в воду. Плотность каждой марки универсального кабеля указано в технических описаниях пояснительной записки.

В местах входа и выхода универсального кабеля из воды, необходимо предусмотреть защиту кабеля от механического повреждения волнами или льдами. Предпочтительными способами защиты можно рассмотреть:

- зарывание кабеля;
- использование защитной трубы соответствующего типа.

знервик

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Стр. 35

РЕКОМЕНДАЦИИ ПО МОНТАЖУ КАБЕЛЯ

Также, следует произвести обследование дна вдоль кабельной трассы. В случае необходимости, кабели следует закрепить при помощи грузов, мешки с цементом или специальные бетонные блоки. Главное - кабель должен неподвижно лежать на дне, в противном случае, смещение кабеля приведет к постепенному износу, повреждению изоляции независимо от его конструкции. Повреждения оболочки кабеля, необходимо устранить в кратчайшие сроки. Проверить целостность оболочки кабеля можно простым способом, проверкой сопротивления изоляции. Универсальные кабели можно прокладывать на глубине до 100 м.

Техническое обслуживание

Воздушные линии с универсальным кабелем требуют меньше технического обслуживания, чем обслуживание линии с неизолированными или изолированными проводами. Тенденция направлена на обслуживание кабелей по мере необходимости, а не на регулярное плановое обслуживание, что является еще одним преимуществом универсальных кабелей. Универсальные кабели является полностью экранированными и изолированными, поэтому, находясь на земле не представляет такой опасности для жизни, как незащищенные и изолированные провода. В случае обрыва кабеля, возникает короткое замыкание и отключение питания, поэтому отсутствует опасность для посторонних.

нервик ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Стр.

36

7. Заземление опор и экранов кабеля

ЗАЗЕМЛЕНИЕ ОПОР. ТЕХНИКА БЕЗОПАСНОСТИ

Заземление железобетонных опор должно быть выполнено в соответствии с требованиями гл. 2.4 пункты 2.4.38 - 2.4.49 ПУЭ 7 издания.

Для выполнения заземления на железобетонных стойках предусмотрены нижний и верхний заземляющие проводники, изготовленные из стального стержня диаметром 10 мм, которые приварены к двум (четырем) спускам, проходящим внутри железобетонной стойки в качестве рабочей арматуры.

Контактные болтовые соединения заземляющих элементов должны быть предварительно зачищены и покрыты слоем смазкой антиоксидантом.

Конструктивное выполнение заземления показано на чертежах опор.

Заземление универсального кабеля необходимо выполнить согласно требованиям гл. 2.3.71 - 2.3.75 ПУЭ 7 издания. Экраны жил универсального кабеля заземляются на его концах. Необходимость и периодичность повторного заземления экранов определяется проектом посредством компьютерных расчетов. Необходимость повторного заземления экранов выполняется для снижения напряжения на оболочке фаз универсального кабеля, которое возникает при повреждении его изоляции, в ряде случаев может потребоваться периодическое заземление экранов по трассе (в дополнение к имеющемуся по концам заземлению экранов. Также, может потребоваться заземление на каждой соединительной муфте [12].

При необходимости к нижнему заземляющему проводнику должны быть приварены дополнительные заземлители в соответствии с проектом повторного применения 3.407-150.

Заземляющее устройство должно выполняться согласно указаниям типового проекта 3.407-150 «Заземляющие устройства опор воздушных линий электропередачи напряжением 0.38; 6; 10; 20; 35 кВ» [4].

8. Техника безопасности

При монтаже опор и кабеля должны соблюдаться общие правила техники безопасности в строительстве согласно СНиП II-4-80 и «Правилам техники безопасности при производстве электромонтажных работ на объектах Минтопэнерго» [5].

Стр.

Часть III

Монтажные таблицы КВЛ 10-20 кВ, рассчитанные по ПУЭ 7 издания

1. Основные положения по расчету опор, кабеля и проводов

В книге предусмотрена возможность подвески самонесущего универсального кабеля, имеющего изоляцию из сшитого полиэтилена на напряжение 10, 20 кВ, отвечающих требованиям стандарта IEC 60502-2.

Книга предусматривает подвеску универсального кабеля следующих марок EXCEL, FXCEL и AXCESTM с номинальными сечениями: EXCEL 3x10/10-10, EXCEL 3x10/10-20, FXCEL 3x16/10-10, FXCEL 3x16/10-20, AXCESTM 3x70/16-10, AXCESTM 3x70/16-20, AXCESTM 3x95/25-20.

Расчет кабелей выполнен на расчетные климатические нагрузки повторяемостью 1 раз в 25 лет по методу допускаемых напряжений, которые при наибольшей расчетной нагрузке приняты не более 40% предела прочности кабеля при растяжении (ПУЭ 7 табл. 2.5.7). Кроме того, допустимые напряжения в кабелях при расчетной нагрузке ограничены максимальным допустимым нормативным тяжением, указанным в таблице 3.1.

Нормативное тяжение в кабеле

Таблица 3.1

Марка и сечение	Максимальное	Максимальное
марка и сечение кабеля, мм ²	напряжение	нормативное
каоеля, мм	в кабеле, даН/мм ² (МПа)	тяжение, даН (кН)
<u>Одноцепн</u>	ные опоры	
EXCEL 3x10/10-10	23,33 (233)	700 (7)
FXCEL 3x16/10-10	14,58 (146)	700 (7)
AXCES TM 3x70/16-10	3,33 (33)	700 (7)
AXCES TM 3x95/25-20	2,46 (25	700 (7)
Двухцепн	ше опоры	
EXCEL 3x10/10-10	17,33 (173)	520 (5,2)
FXCEL 3x16/10-10	10,83 (108)	520 (5,2)
AXCES TM 3x70/16-10	2,48 (25)	520 (5,2)
AXCES TM 3x95/25-20	1,82 (19)	520 (5,2)

Допустимое напряжение при среднегодовой температуре в кабелях принято равным не более 40 H/мм² (табл. 2.5.10 ПУЭ).

Нормативные ветровые и гололедные нагрузки принимались в соответствии с Правилами устройства электроустановок седьмого издания [1].

Нормативное ветровое давление при гололеде W_{Γ} =200 Па (п.2.5.43 ПУЭ-7).

Нормативные ветровые нагрузки на кабели, провода и конструкции опор определены для условий, указанных в таблице 3.2, нормативные гололедные нагрузки – в таблице 3.3 согласно ПУЭ.

Таблица 3.2

а 3.2 Таблица 3.3

Район по ветру	Нормативное ветровое давление W ₀ , Па (скорость ветра V ₀ , м/с)
I	400 (25)
II	500 (29)
III	650 (32)
IV	800 (36)

Район по гололеду	Нормативная толщина стенки гололеда bэ, мм
I	10
II	15
III	20
IV	25

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ

Расчет конструкций опор выполнен с учетом подвески одноцепного и двухцепного универсального кабеля EXCEL, FXCEL, AXCES $^{\text{TM}}$ и с совместной подвеской одноцепного или двухцепного проводов СИП-4.

Расчет промежуточных опор на прочность в нормальном режиме работы КВЛ выполнен на одновременное воздействие поперечной ветровой нагрузки на универсальный кабель, провода и конструкции опор в безгололедном и гололедном режимах и на весовые нагрузки, создающие изгибающий момент на стрелах прогиба опор.

Опоры анкерного типа и угловые опоры рассчитаны на одновременное воздействие ветровой нагрузки и расчетное тяжение в кабелях и в проводах.

Натяжку универсального кабеля при строительстве ВЛ следует выполнять в соответствии с величинами монтажных стрел провеса кабеля, приведенными в таблицах 3.6 - 3.37.

Натяжку проводов СИП-4 – в соответствии с величинами монтажных стрел провеса проводов, приведенными в книге 1 редакция 5.

В таблицах 3.6 - 3.37 приняты следующие условные обозначения для расчетных режимов кабеля (проводов):

«ВГ» - ветер при гололеде на проводах (кабелях);

«В» - максимальный ветер, гололед отсутствует;

 \ll -5 Γ » - провода (кабели) покрыты гололедом, ветер отсутствует;

«tmin -40» - низшая температура воздуха минус 40°С;

«tсг 0» - среднегодовая температура (0°С), ветер и гололед отсутствует;

 $\langle t_{max} + 40 \rangle$ - высшая температура воздуха плюс 40° С.

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ СОСТАВ ТАБЛИЦ

Стр.

40

2. Состав таблиц

Таблица 3.4

	Одноцепные а с подвеской универса. и с совместной п	льного каб	беля (ЕХСЕ))
Район по гололеду	Марка и сечение кабеля	Номер табли- цы	Район по гололеду	Марка и сечение кабеля	Номер таблицы
,	EXCEL 3x10/10-10	3.6		EXCEL 3x10/10-10	3.8
l l -10	FXCEL 3x16/10-10	3.10	III	FXCEL 3x16/10-10	3.12
$b_{\mathfrak{s}}=10$	AXCES TM 3x70/16-10	3.14	b _э =20мм	AXCES TM 3x70/16-10	3.16
IVIIVI	AXCES TM 3x95/25-20	3.18		AXCES TM 3x95/25-20	3.20
	EXCEL 3x10/10-10	3.7		EXCEL 3x10/10-10	3.9
II 1. 15	FXCEL 3x16/10-10	3.11	IV	FXCEL 3x16/10-10	3.13
$b_{\mathfrak{s}}=15$	AXCES TM 3x70/16-10	3.15	b _{.9} =25 мм	AXCES TM 3x70/16-10	3.17
IVIIVI	AXCES TM 3x95/25-20	3.19		AXCES TM 3x95/25-20	3.21

Таблица 3.5

•	Двухцепные а подвеской универса и с совместной п	льного каб	беля (EXCEI	L, FXCEL и AXCES TM)
Район по гололеду	Марка и сечение кабеля	Номер табли- цы	Район по гололеду	Марка и сечение кабеля	Номер таблицы
	EXCEL 3x10/10-10	3.22		EXCEL 3x10/10-10	3.24
h -10	FXCEL 3x16/10-10	3.26	III	FXCEL 3x16/10-10	3.28
$b_{9}=10$	AXCES TM 3x70/16-10	3.30	b _э =20мм	AXCES TM 3x70/16-10	3.32
IVIIVI	AXCES TM 3x95/25-20	3.34		AXCES TM 3x95/25-20	3.36
***	EXCEL 3x10/10-10	3.23		EXCEL 3x10/10-10	3.25
II	FXCEL 3x16/10-10	3.27	IV	FXCEL 3x16/10-10	3.29
$b_{\mathfrak{s}}=15$	AXCES TM 3x70/16-10	3.31	b _э =25 мм	AXCES TM 3x70/16-10	3.33
IVIIVI	AXCES TM 3x95/25-20	3.35		AXCES TM 3x95/25-20	3.37

Таблица 3.6

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Монтажные таблицы универсального кабеля EXCEL 3х10/10-10

3. Таблицы стрел провеса и тяжений

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, І-ІV район

 $T_{\text{сг_доп}} = 7000 \; \text{H}; \; \sigma_{\text{сг_доп}} = T_{\text{сг_доп}} / \text{S} = 202, 5 \; \text{H/мм}^2$ $T_{p_{\rm HoII}} = 7000~H;~\sigma_{p_{\rm HoII}} = T_{p_{\rm HoII}}/S = 233,3~H/m{\rm M}^2$ $b_{_{\rm 3}}\!=10~{\rm MM}$

Пролет,		Тяже	ние п	провод	Гяжение проводника, Н	Η,					C	трель	прои	seca, n	м, прв	Стрелы провеса, м, при температуре, ^о С	ерату	pe, oc	7.			
W	Режим	BΓ	В	-5Γ	t _{min} ,	ter, 0	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5∏
20	tmin	5468	6995	5087	7000	5468 5669 5087 7000 4447 2295	2295	90,0	0,07 0,08	0,08	0,08 0,09		0,09 0,10		0,11	0,11 0,11 0,12 0,14	0,12	0,14	0,15 0,16		0,18	0,15
25	tmin	2776	6034	5270	2000	5776 6034 5270 7000 4502 2485		60,0	0,11	0,12	0,12	0,13	0,14 0,15	0,15	0,16 0,17	0,17	0,19 0,20		0,22	0,24	0,26	0,22
30	P _{max}	2809	8689	5463	1000	6087 6398 5463 7000 4564 2667	2667	0,13	0,16	0,17	0,13 0,16 0,17 0,18 0,19 0,20 0,21	0,19	0,20	0,21	0,23	0,24 0,26 0,28	0,26		0,30	0,32	0,34	0,31
35	Pmax	9689	6756	9995	7000	6396 6756 5660 7000 4631 2839	2839	0,18	0,22	0,23	0,18 0,22 0,23 0,24 0,25 0,27 0,29 0,30 0,32 0,34 0,37 0,39 0,41	0,25	0,27	0,29	0,30	0,32	0,34	0,37	0,39		0,44	0,41
40	P _{max}	6859	7000	5734	6827	6589 7000 5734 6827 4556 2915		0,24	0,29	0,30	$0,29 \mid 0,30 \mid 0,32 \mid 0,34 \mid 0,36 \mid 0,38 \mid 0,40 \mid 0,42 \mid 0,45 \mid 0,47 \mid 0,50$	0,34	0,36	0,38	0,40	0,42	0,45	0,47	0,50	0,53	0,56	0,53
45	P _{max}	6533	7000	5539	6241	6533 7000 5539 6241 4169 2803	2803	0,33	0,40	0,42	0,33 0,40 0,42 0,44 0,47 0,49 0,52 0,55 0,58 0,61 0,64	0,47	0,49	0,52	0,55	0,58	0,61	0,64	0,67	0,70	0,73	69,0
50	P _{max}	6483	7000	5366	5647	6483 7000 5366 5647 3829 2715	2715	0,45	0,55	0,57	0,45 0,55 0,57 0,60 0,63 0,66 0,70 0,73 0,76 0,80 0,83	0,63	99,0	0,70	0,73	0,76	0,80	0,83	0,87 0,90		0,94	0,88
55	P _{max}	6454	7000	5251	5134	6454 7000 5251 5134 3582 2665	2665	0,60	0,72	0,75	0,60 0,72 0,75 0,79 0,82 0,86 0,90	0,82	98,0	0,00	0,93	0,93 0,97 1,01 1,04	1,01	1,04	1,08	1,12	1,15	1,09
09	P _{max}	6433	7000	5160	4683	6433 7000 5160 4683 3390 2630		0,78	0,93	96,0	0,93 0,96 1,00 1,04 1,08 1,12	1,04	1,08	1,12	1,16	1,16 1,20 1,24 1,28	1,24	1,28	1,32	1,35	1,39	1,32
65	P _{max}	6418	7000	5090	4308	6418 7000 5090 4308 3243 2606	2606	1,00	1,16	1,20	$1,00 \mid 1,16 \mid 1,20 \mid 1,24 \mid 1,28 \mid 1,33 \mid 1,37 \mid 1,41 \mid 1,45 \mid 1,49 \mid 1,53 \mid 1,57 \mid 1,61 \mid 1,65$	1,28	1,33	1,37	1,41	1,45	1,49	1,53	1,57	1,61		1,57
70	P _{max}	6408	7000	5037	4007	$6408 \big 7000 \big 5037 \big 4007 \big 3132 \big 2590 $	2590	1,24	1,42	1,46	1,24 1,42 1,46 1,51 1,55 1,59 1,63 1,68 1,72 1,76 1,80 1,84 1,88 1,92	1,55	1,59	1,63	1,68	1,72	1,76	1,80	1,84	1,88	1,92	1,84

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.7

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=15~{\rm MM}$

Максимальное (нормативное) тяжение проводника:

Монтажные таблицы универсального кабеля EXCEL 3x10/10-10

- в режимах наибольшей нагрузки и низшей температуры

Район по гололеду Район по ветру

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

 $T_{\text{Cl_doll}} = 6075~\text{H};~\sigma_{\text{cl_doll}} = T_{\text{cl_doll}}/S = 202,5~\text{H/mm}^2$ $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 233,3~H/{\rm MM}^2$ $\gamma_{\text{pB}}=1,0$ $\gamma_{pr}=1,0$

Гяжение проводника, Н	ровод	ника, 1	H					C	Стрелы провеса, м, при температуре, ^о С	ироп г	seca, n	1, при	темп	ерату	pe, ^o C	<i>r</i> \			
-5 Γ $\frac{t_{min}}{-40}$	tmin.		ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15 +20		+25	+30	+35	+40	-5Γ
5823 5669 5367 7000 4447 2295	700	0 4	1447		0,06 0,07		0,08	0,08	0,00 0,00		0,10	0,11	0,10 0,11 0,11 0,12	0,12	0,14 0,15	0,15	0,16	0,18	0,19
6229 6034 5644 7000 4502 2485	700	0 4	1502		0,09	0,11	0,12	0,12	0,13	0,14	0,15	0,16	0,13 0,14 0,15 0,16 0,17 0,19	0,19	0,20	0,22	0,24	0,26	0,28
6632 6398 5927 7000 4564 2667	700	0 4	1564		0,13	0,16	0,17	0,18	0,19	0,20	0,21	0,23	0,24	0,26	0,28	0,30	0,32	0,34	0,38
7000 6731 6181 6959 4596 2817	6958	4	9651		0,18 0,22		0,23 0,24	0,24	0,26 0,27 0,29 0,31 0,33 0,35 0,37 0,39 0,42	0,27	0,29	0,31	0,33	0,35	0,37	0,39	0,42	0,44	0,50
7000 6688 6041 6300 4129 2668	6300	4	1129		0,26 0,32		0,33	0,35 0,37 0,39 0,42 0,44 0,47 0,49 0,52 0,55	0,37	0,39	0,42	0,44	0,47	0,49	0,52	0,55	0,58	0,61	99,0
7000 6649 5917 5616 3713 2553	5616	(L)	3713		0,37 0,45		0,47	0,50	0,53	0,55 0,58	0,58	0,61	0,65 0,68	89,0	0,71 0,74	0,74	0,77	0,81	0,86
7000 6616 5810 4953 3373 2466	4953	(4)	373 [-	0,51 0,62 0,66 0,69	0,62	99,0	69,0	0,72 0,75 0,79 0,82 0,86 0,89 0,93 0,96 1,00	0,75	0,79	0,82	0,86	0,89	0,93	96,0	1,00	1,03	1,08
7000 6574 5737 4392 3128 2410	4392	(4)	128		0,70	0,84	0,87	0,91	0,95 0,98 1,02 1,06	86,0	1,02	1,06	1,10 1,13	1,13	1,17 1,21	1,21	2,24	1,28	1,32
7000 6533 5680 3934 2946 2368	3937	1 2	946		0,93 1,09		1,13	1,16 1,20 1,24 1,28	1,20	1,24	1,28	1,32	1,36 1,40		1,44 1,47	1,47	1,51	1,55	1,59
7000 6494 5635 3582 2810 2337	358	2 2	2810		1,20	1,37	1,41	1,20 1,37 1,41 1,45 1,49 1,53 1,57 1,61 1,65 1,69 1,73 1,76 1,80 1,84	1,49	1,53	1,57	1,61	1,65	1,69	1,73	1,76	1,80	1,84	1,88
7000 6456 5601 3320 2708 2314	332	0 2	2 807		1,50	1,67	1,72	1,50 1,67 1,72 1,76 1,80 1,84 1,88	1,80	1,84	1,88	1,92	1,92 1,96 2,00	2,00	2,04	2,08	2,12	2,15	2,19

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.8

Монтажные таблицы универсального кабеля EXCEL 3x10/10-10

Район по гололеду

Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 233,3~H/{\rm MM}^2$

 $T_{\text{Cl_Mon}} = 6075 \text{ H; } \sigma_{\text{Cl_Mon}} = T_{\text{Cl_Mon}} / S = 202,5 \text{ H/mm}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	H					C	грель	и пров	seca, n	4, прв	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	T >			
W	Режим	BΓ	В	-5F	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Γ
20	t_{\min}	6432	6999	5980	7000	6432 5669 5980 7000 4447 2295		90,0	0,07	0,08	0,08	0,00	60,0	0,10	0,11 0,11	0,11	0,12	0,14 0,15	0,15	0,16	0,18	0,25
25	t_{\min}	L 869	6034	6426	2000	6987 6034 6426 7000 4502 2485		0,00	0,11	0,12	0,12 0,13 0,14 0,15 0,16 0,17 0,19 0,20 0,22	0,13	0,14	0,15	0,16	0,17	0,19	0,20	0,22	0,24	0,26	0,36
30	$\mathbf{P}_{\mathrm{max}}$	7000	5810	8089	6909	7000 5810 6308 6063 3760 2208		0,15	0,19	0,20	0,21	0,23	0,24	0,26	0,28	0,30	0,32	0,34	0,37	0,39	0,41	0,53
35	\mathbf{p}_{\max}	7000	6099	6197	5023	7000 5609 6197 5023 3091 2017		0,25 0,31	0,31	0,33	0,36 0,38 0,40 0,43 0,45 0,48 0,51 0,54 0,56 0,59	0,38	0,40	0,43	0,45	0,48	0,51	0,54	0,56	0,59	0,62	0,74
40	$\mathbf{P}_{\mathrm{max}}$	7000	5447	6106	4028	7000 5447 6106 4028 2613 1894		0,40	0,51	0,53	0,53 0,56 0,59 0,62 0,65 0,68 0,71 0,74 0,77 0,80 0,83	0,59	0,62	0,65	0,68	0,71	0,74	0,77	0,80		98,0	86,0
45	$\mathbf{P}_{\mathrm{max}}$	7000	5320	6033	3243	7000 5320 6033 3243 2307 1812		0,64	0,76	0,80	0,83	0,86 0,89	0,89	0,92 0,96 0,99	96,0	0,99	1,02	1,05	1,08	1,11	1,14	1,25
50	\mathbf{p}_{\max}	7000	5220	5974	2725	7000 5220 5974 2725 2113 1756		0,93 1,07	1,07	1,11	1,11 1,14 1,17 1,20 1,24 1,27 1,30 1,33 1,36 1,39 1,42 1,45	1,17	1,20	1,24	1,27	1,30	1,33	1,36	1,39	1,42		1,56
55	$\mathbf{P}_{\mathrm{max}}$	7000	5125	5942	2417	7000 5125 5942 2417 1993 1721	1721	1,27 1,41	1,41	1,45 1,48	1,48	1,51	1,54	1,58	1,61	1,51 1,54 1,58 1,61 1,64 1,67 1,70 1,73 1,76	1,67	1,70	1,73	1,76	1,79	1,90
09	$\mathbf{P}_{\mathrm{max}}$	7000	5044	5919	2222	7000 5044 5919 2222 1912 1696		1,65 1,79		1,82	1,85	1,88	1,92	1,95	1,98	2,01	2,04	2,07 2,10 2,13	2,10		2,16	2,27
65	\mathbf{P}_{max}	7000	4975	5903	2092	7000 4975 5903 2092 1854 1678	1678	2,05	2,19	2,22	2,05 2,19 2,22 2,25 2,29 2,32 2,35 2,38 2,41 2,44 2,47 2,50 2,53 2,56	2,29	2,32	2,35	2,38	2,41	2,44	2,47	2,50	2,53	2,56	2,67
70	P _{max}	7000	4914	5893	2001	7000 4914 5893 2001 1812 1665		2,49	2,62	2,66	2,66 2,69 2,72 2,75 2,78 2,81 2,84	2,72	2,75	2,78	2,81	2,84	2,88	2,91 2,93 2,96	2,93	2,96	2,99	3,11

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.9

W₀ = 400-800 Па, I-IV район

Монтажные таблицы универсального кабеля EXCEL 3x10/10-10

 $b_{_{3}}\!=25~\mathrm{MM}$

- в режимах наибольшей нагрузки и низшей температурь Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

19	$T_{p_{\rm don}} = 7000~H;~\sigma_{p_{\rm don}} = T_{p_{\rm don}}/S = 233,3~H/{\rm MM}^2$
	$T_{cr_доп} = 6075~\mathrm{H};~\sigma_{cr_доп} = T_{cr_доп}/\mathrm{S} = 202,5~\mathrm{H/mm}^2$
	$\gamma_{\text{pb}}=1,0$
ė	$\gamma_{\rm pr} = 1.0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	грель	пров	eca, n	, при	Стрелы провеса, м, при температуре,	ерату	pe, ^o C	Ψ.			
W	Режим	BΓ	В	-5T	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Γ
20	t_{\min}	8969	6999	6500	6968 5669 6500 7000 4447 2295	4447		90,0	0,07	0,08	0,08	0,09	60,0	0,10 0,11	0,11	0,11 (0,12	0,14	0,15	0,15 0,16	0,18	0,29
25	t_{\min}	7000	5269	6398	7000 5269 6398 5825 3469	3469	1907	0,11	0,14	0,15	0,16	0,17	0,18	0,20 0,21		0,23	0,25	0,27	0,29	0,31	0,33	0,47
30	$\mathbf{P}_{\mathrm{max}}$	7000	4919	6288	7000 4919 6288 4455 2599 1671	2599		0,21	0,27	0,29	0,31	0,33	0,35	0,38	0,40	0,42	0,45	0,47	0,50	0,52	0,55	0,68
35	\mathbf{P}_{max}	7000	4662	6203	7000 4662 6203 3216 2076 1541	2076		0,39 0,49		0,52	0,52 0,55 0,57 0,60	0,57	0,60	0,63 0,65 0,68	9,65	0,68	0,71	0,73	0,76	0,71 0,73 0,76 0,78	0,81	0,94
40	$\mathbf{P}_{\mathrm{max}}$	7000	4478	6138	7000 4478 6138 2424 1800 1463	1800		0,67	0,79	0,82	0,85	0,88	06,0	0,93 0,96	96,0	66,0	1,01	1,04	1,06	1,09	1,11	1,24
45	\mathbf{P}_{max}	7000	4346	8809	7000 4346 6088 2014 1644 1413	1644		1,02	1,14	1,17	1,17 1,20 1,23 1,25 1,28 1,31 1,33 1,36	1,23	1,25	1,28	1,31	1,33	1,36	1,38 1,41 1,43	1,41	1,43	1,46	1,58
50	\mathbf{P}_{max}	7000	4250	6049	7000 4250 6049 1791 1549 1379	1549		1,42 1,53	1,53	1,56	1,56 1,59 1,62 1,64	1,62	1,64	1,67 1,69	1,69	1,72 1,75 1,77 1,80	1,75	1,77	1,80	1,82	1,84	1,97
55	$P_{\rm max}$	7000	4161	6032	7000 4161 6032 1665 1490 1359	1490		1,85	1,96	1,99	2,01	2,04	2,07	2,09	2,12	2,14	2,17	2,19	2,22	2,24	2,26	2,39
09	$P_{\rm max}$	7000	4088	6022	7000 4088 6022 1583 1450 1345	1450		2,31 2,42	2,42	2,45	2,45 2,47 2,50 2,53 2,55 2,58 2,60	2,50	2,53	2,55	2,58	2,60	2,63	2,65 2,68	2,68	2,70	2,72	2,85
65	$P_{\rm max}$	7000	4027	6016	7000 4027 6016 1526 1421 1334	1421		2,82	2,92	2,95	2,95 2,97 3,00 3,02	3,00	3,02	3,05 3,08	3,08	3,10	3,12	3,15 3,17	3,17	3,20	3,22	3,34
70	P _{max}	7000	3974	6015	7000 3974 6015 1486 1400 1327	1400	_	3,36 3,46	3,46	3,49	3,49 3,51 3,54 3,56 3,59 3,61 3,64	3,54	3,56	3,59	3,61	3,64	3,66	3,68 3,71 3,73	3,71	3,73	3,76	3,88

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.10

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{\text{Cl_doll}} = 7000 \text{ H; } \sigma_{\text{Cl_doll}} = T_{\text{Cl_doll}}/S = 145.8 \text{ H/mm}^2$ $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 145,8~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	Гяжение проводника, Н	ника	Н,						Стрелы провеса, м, при температуре, ^о С	проп	Beca, 1	м, прв	темп	ерату	pe, ^o C	7)			
W	Режим	Bľ	В	-5Γ	t _{min} , -40	$ ext{tcr}, 0$	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Γ
20	$t_{ m min}$	5382	9999	4856	7000	5382 5656 4856 7000 3917 2000		0,07	60,0	0,10	0,11	0,12	0,13	0,13 0,14 0,16 0,17 0,19 0,20 0,22 0,24	0,16	0,17	0,19	0,20	0,22	0,24	0,26	0,18
25	tmin	5817	6152	5162	7000	5817 6152 5162 7000 4065 2294		0,11	0,15	0,16	0,17	0,18	0,20	0,21 0,23	0,23	0,25 0,27 0,29	0,27		0,31	0,33	0,35	0,27
30	P _{max}	6235	6626	6235 6626 5461	2000	7000 4216 2561		0,16	0,21	0,22	0,24	0,25	0,27	0,29	0,31	0,33	0,36	0,38	0,40	0,42	0,45	0,36
35	P _{max}	6555	7000	2995	<i>L</i> 989	6555 7000 5665 6867 4269 2760	2760	0,23 0,29	0,29	0,30	0,32	0,34	0,37	0,37 0,39 0,41 0,44 0,46 0,49 0,51 0,54	0,41	0,44	0,46	0,49	0,51		0,57	0,48
40	P _{max}	6496	1000	5474	6092	6496 7000 5474 6092 3913 2735		0,33 0,42	0,42	0,44	0,47 0,49 0,52 0,55 0,58 0,61 0,63 0,66 0,69	0,49	0,52	0,55	0,58	0,61	0,63	99,0	69,0	0,72	0,75	0,64
45	P _{max}	6447	7000	5318	5372	6447 7000 5318 5372 3639 2715		0,48	0,59	0,62	0,65	99,0	0,71	0,74	0,77	0,80	0,83	0,86	0,89	0,92	0,95	0,84
50	P _{max}	6406	1000	5192	4767	6406 7000 5192 4767 3434 2700		0,67	0,80	0,83	98,0	0,60	0,93	66'0 96'0	66,0	1,03	1,06 1,09 1,12 1,15	1,09	1,12		1,18	1,06
55	P _{max}	6389	1000	5125	4350	6389 7000 5125 4350 3311	2706	0,89 1,03	1,03	1,06	1,06 1,10	1,13	1,16	1,16 1,20 1,23	1,23	1,27 1,30 1,33 1,36 1,39 1,43	1,30	1,33	1,36	1,39	1,43	1,30
09	P _{max}	6380	7000	5079	4045	6380 7000 5079 4045 3223 2715		1,13	1,28	1,32	1,35	1,39	1,42	1,46 1,49	1,49	1,53 1,56	1,56	1,59	1,63	1,66	1,69	1,56
65	\mathbf{P}_{\max}	6376	7000	5048	3824	6376 7000 5048 3824 3160 2726	2726	1,41	1,41 1,56	1,60	1,63	1,67	1,70	1,74 1,77	1,77	1,81	1,84	1,88 1,91	1,91	1,94	1,98	1,84
70	Pmax	6377	7000	5030	3664	6377 7000 5030 3664 3115 2740		1,71	1,86	1,90	1,71 1,86 1,90 1,93 1,97	1,97	2,01	2,01 2,04 2,08 2,11 2,15 2,18 2,21 2,25 2,28	2,08	2,11	2,15	2,18	2,21	2,25	2,28	2,14

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.11

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район $b_{_{\rm 3}}\!=15~{\rm MM}$

 $T_{\text{Cl_doll}} = 7000 \text{ H; } \sigma_{\text{Cl_doll}} = T_{\text{Cl_doll}}/S = 145.8 \text{ H/mm}^2$ $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 145,8~H/{\rm MM}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					Ö	трель	проп	seca, n	4, при	Стрелы провеса, м, при температуре,	ерату	pe, °C	<i>r</i> \			
Z Z	Режим	Bľ	В	-5Г	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	٠-	0	+5 +10	+10	+15	+20	+25	+30	+35	+40	-5Γ
20	t _{min}	2866	9999	5278	5866 5656 5278 7000 3917	3917	2000	0,07	60,0	0,10	0,11	0,12	0,13	0,14	0,16	0,17	0,19	0,20	0,22	0,24	0,26	0,21
25	tmin	6408	6152	6899	6408 6152 5689 7000 4065 2294	4065		0,11 0,15		0,16 0,17	0,17	0,18	0,20	0,21 0,23		0,25 0,27 0,29 0,31 0,33	0,27	0,29	0,31	0,33	0,35	0,31
30	$\mathbf{P}_{ ext{max}}$	6922	6626	6085	6922 6626 6085 7000 4216 2561	4216		0,16	0,21	0,22	0,24	0,25	0,27	0,29	0,31	0,33	0,36	0,38	0,40	0,42	0,45	0,42
35	\mathbf{p}_{\max}	7000	8599	6027	7000 6658 6027 6248 3854 2563	3854		0,25 0,32		0,34	0,36	0,38 0,41	0,41	0,43 0,45	0,45	0,48	0,51 0,53 0,56	0,53	0,56	0,58	0,61	0,58
40	$\mathbf{P}_{ ext{max}}$	7000	6618	5910	7000 6618 5910 5387 3500 2530	3500		0,38	0,47	0,38 0,47 0,50 0,53		0,55 0,58 0,61 0,64	0,58	0,61	0,64	0,67 0,70 0,72 0,75 0,78	0,70	0,72	0,75		0,81	0,77
45	Pmax	7000	6585	5815	7000 6585 5815 4651 3246 2505	3246	-	0,56 0,67		0,70	0,73	0,76	0,80	0,83	0,86	0,89	0,92	0,95	0,97	1,00	1,03	0,99
50	$\mathbf{P}_{ ext{max}}$	7000	8559	5739	7000 6558 5739 4092 3065 2486	3065		0,78 0,91 0,94 0,98	0,91	0,94	86,0	1,01 1,04	1,04	1,07 1,10	1,10	1,13	1,16 1,19 1,22	1,19	1,22	1,25	1,28	1,23
55	$\mathbf{P}_{ ext{max}}$	7000	6518	5695	7000 6518 5695 3718 2948 2480	2948		1,04	1,18	1,21 1,24	1,24	1,28 1,31	1,31	1,34	1,37	1,40	1,43 1,47 1,50	1,47	1,50	1,53	1,55	1,50
09	$\mathbf{P}_{ ext{max}}$	7000	6481	5664	7000 6481 5664 3457 2864 2478	2864		1,33	1,47	1,50	1,54	1,57	1,60	1,64	1,67	1,70	1,73	1,76	1,79	1,82	1,85	1,80
65	$\mathbf{P}_{\mathrm{max}}$	7000	6445	5642	7000 6445 5642 3273 2802 2477	2802		1,65	1,79	1,82	$1,65 \ \ 1,79 \ \ 1,82 \ \ 1,86 \ \ 1,89 \ \ 1,92 \ \ 1,99 \ \ 1,99$	1,89	1,92	1,95	1,99	2,02	2,05 2,08	2,08	2,11 2,14		2,17	2,12
70	$\mathbf{P}_{ ext{max}}$	7000	6411	5628	7000 6411 5628 3140 2757 2479	2757		1,99 2,13	2,13	2,17	2,17 2,20 2,23 2,27	2,23	2,27	2,30	2,33	2,36 2,40 2,43	2,40	2,43	2,46 2,49	2,49	2,52	2,46

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.12

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{Cl_doll}} = 7000 \text{ H; } \sigma_{\text{Cl_doll}} = T_{\text{Cl_doll}}/S = 145.8 \text{ H/mm}^2$ $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 145,8~H/{\rm MM}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н,					C	Стрелы провеса, м, при температуре,	пров	eca, M	1, при	темп	ерату	De, ^o C	7.			
W	Режим	BΓ	В	-5T	t _{min} ,	ter, 0	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10 +15	+15	+20	+25	+30	+35	+40	-5Γ
20	t _{min}	6661	9999	6113	7000	6661 5656 6113 7000 3917 2000	2000	0,07	0,09 0,10	0,10	0,11	0,11 0,12 0,13 0,14	0,13		0,16 0,17	0,17	0,19 0,20		0,22 0,24		0,26	0,27
25	t _{min}	7000	5753	6326	6311	7000 5753 6326 6311 3557 2080	2080	0,13	0,17	0,18	0,19	0,17 0,18 0,19 0,21 0,22 0,24	0,22	0,24	0,26 0,28 0,30 0,32	0,28	0,30	0,32	0,34 0,36	0,36	0,38	0,41
30	P _{max}	7000	5532	6211	4967	7000 5532 6211 4967 2931 1996	1996	0,23	0,30	0,32	0,35	0,35 0,37 0,39 0,41	0,39	0,41	0,44 0,46	0,46	0,48	0,51	0,53	0,55	0,57	0,59
35	P _{max}	7000	5369	6123	3838	7000 5369 6123 3838 2555 1943	1943	0,41	0,51	0,53	0,56	0,41 0,51 0,53 0,56 0,59 0,61 0,64 0,66 0,69 0,71 0,73	0,61	0,64	99,0	69,0	0,71	0,73	0,76 0,78	0,78	0,80	0,82
40	P _{max}	7000	5249	6057	3115	7000 5249 6057 3115 2335 1909	1909	0,65	0,77	0,79	0,82	0,65 0,77 0,79 0,82 0,85 0,87 0,90 0,92 0,95 0,97 1,00	0,87	06,0	0,92	0,95	0,97	1,00	1,02 1,05		1,07	1,08
45	P _{max}	7000	5160	2009	2703	7000 5160 6007 2703 2198 1885	1885	96,0	1,07	1,10	1,12	0,96 1,07 1,10 1,12 1,15 1,17 1,20 1,23 1,25 1,27 1,30	1,17	1,20	1,23	1,25	1,27	1,30	1,32	1,35	1,37	1,38
50	P _{max}	7000	5093	8969	2460	7000 5093 5968 2460 2109 1868	1868	1,30	1,41	1,43	1,46	1,30 1,41 1,43 1,46 1,49 1,51 1,54 1,56 1,59 1,61 1,64 1,66 1,68	1,51	1,54	1,56	1,59	1,61	1,64	1,66	1,68	1,71	1,72
55	$\mathbf{P}_{\mathrm{max}}$	7000	5024	5952	2315	7000 5024 5952 2315 2053 1860	1860	1,67	1,77	1,80	1,83	1,67 1,77 1,80 1,83 1,85 1,88 1,90 1,93 1,95 1,98 2,00	1,88	1,90	1,93	1,95	1,98	2,00	2,03 2,05	2,05	2,07	2,09
09	P_{max}	7000	4965	5943	2219	7000 4965 5943 2219 2014 1855	1855	2,07	2,18	2,20	2,23	2,18 2,20 2,23 2,25 2,28 2,30	2,28	2,30	2,33 2,35 2,38 2,40	2,35	2,38	2,40	2,43	2,45	2,47	2,49
65	$\mathbf{P}_{\mathrm{max}}$	7000	4913	5939	2151	7000 4913 5939 2151 1986 1852	1852	2,50	2,61	2,64	2,66	2,50 2,61 2,64 2,66 2,69 2,71 2,74 2,76 2,79 2,81 2,84	2,71	2,74	2,76	2,79	2,81	2,84	2,86 2,88	2,88	2,91	2,92
70	Pmax	7000	4867	5938	2102	7000 4867 5938 2102 1965 1851	1851	2,97	3,08	3,10	3,13	2,97 3,08 3,10 3,13 3,15 3,18 3,20 3,23 3,25 3,28 3,30 3,33 3,35 3,37	3,18	3,20	3,23	3,25	3,28	3,30	3,33	3,35	3,37	3,39

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.13

W₀ = 400-800 Па, I-IV район

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

 $b_{_{3}}\!=25~\mathrm{MM}$

Максимальное (нормативное) тяжение проводника:

Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке

 $T_{\text{Cl_doll}} = 7000 \text{ H; } \sigma_{\text{Cl_doll}} = T_{\text{Cl_doll}}/S = 145.8 \text{ H/mm}^2$ $T_{p_{\rm H}0\rm H} = 7000~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 145,8~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$ $\gamma_{pr}=1,0$

Пролет,		Тяже	ние п	повод	Гяжение проводника, Н	Н					5	Стрелы провеса, м, при температуре, ^о С	пров	eca, M	, при	темп	рату	pe, °C				
W	Режим	Bľ	В	-5Γ	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	<u>ئ</u>	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Г
20	t_{\min}	7000	5273	6435	6375	7000 5273 6435 6375 3424 1807		0,08	0,11	0,12	0,13	0,14	0,15	0,16 0,18),18	0,19 (0,21 0,23		0,25	0,26	0,28	0,32
25	t_{\min}	7000	4872	6314	4614	7000 4872 6314 4614 2549 1683		0,17	0,23	$0,23 \ \left \ 0,25 \ \right \ 0,27 \ \left \ 0,29 \ \right \ 0,31 \ \left \ 0,35 \ \right \ 0,35 \ \left \ 0,40 \ \right \ 0,42 \ \left \ 0,44 \ \right \ 0,45 \\$	0,27	0,29	0,31	0,33),35 (),37 (),40	0,42	0,44		0,47	0,51
30	\mathbf{p}_{\max}	7000	4605	6228	3191	7000 4605 6228 3191 2109 1615		0,36	0,45	0,48	0,50	0,52	0,54	0,57	0,59	0,61	0,63	0,65	0,67	69,0	0,71	0,75
35	\mathbf{p}_{\max}	7000	4430	6166	2454	7000 4430 6166 2454 1891 1576		0,64	0,73	0,73 0,76 0,78 0,80 0,83	0,78	0,80	0,83	0,85	0,85 0,87 0,89 0,91 0,93 0,95 0,97),89 (),91	0,93	96,0		66,0	1,02
40	$\mathbf{P}_{ ext{max}}$	7000	4312	6121	2107	7000 4312 6121 2107 1771 1550		0,97	1,06	1,09	1,11 1,13 1,15 1,17 1,19	1,13	1,15	1,17	1,19	1,22 1,24 1,26 1,28	1,24	1,26	1,28	1,30	1,32	1,35
45	\mathbf{p}_{\max}	7000	4230	8809	1922	7000 4230 6088 1922 1696 1533		1,34	1,43	1,46	1,48	1,50	1,52	1,54	1,56	1,58	1,60	1,62	1,64	1,66	1,68	1,72
50	\mathbf{p}_{\max}	7000	4170	6909	1810	7000 4170 6063 1810 1647 1521		1,76	1,85	$1,76 \mid 1,85 \mid 1,87 \mid 1,89 \mid 1,91 \mid 1,93 \mid 1,96 \mid 1,98 \mid 2,00 \mid 2,02 \mid 2,04 \mid 2,06 \mid 2,08$	1,89	1,91	1,93	1,96	, 86,1	2,00 2	2,02	2,04	2,06		2,10	2,13
55	\mathbf{P}_{\max}	7000	4109	6057	1742	7000 4109 6057 1742 1617 1515		2,21	2,30	2,32	2,34	2,36	2,38	2,41	2,43	2,45	2,47	2,49	2,51	2,53	2,55	2,58
09	$\mathbf{P}_{ ext{max}}$	7000	4057	6055	1696	7000 4057 6055 1696 1596 1512		2,71	2,79	2,81	2,83	2,85	2,88	2,90	2,92 2,94 2,96	2,94	. 96,2	2,98	3,00 3,02		3,04	3,07
65	\mathbf{p}_{\max}	7000	4013	6057	1663	7000 4013 6057 1663 1581 1510		3,24 3,32 3,34	3,32	3,34	3,37 3,39 3,41 3,43 3,45 3,47 3,49 3,51 3,53 3,55	3,39	3,41	3,43	3,45	3,47	3,49	3,51	3,53		3,57	3,60
70	Pmax	7000	3973	6061	1639	7000 3973 6061 1639 1570 1509		3,81	3,90	3,92	3,94	3,96 3,98	3,98	4,00	4,02 4,04 4,06 4,08	1,04	1,06	4,08	4,10 4,12		4,14	4,17

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.14

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{\text{cl_don}} = 7000~\text{H};~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 33,3~\text{H/M}^2$ $T_{p_{\rm Hol}} = 7000~H;~\sigma_{p_{\rm Hol}} = T_{p_{\rm Hol}}/S = 33,3~H/{\rm MM}^2$

Пролет,		Тяже	ние п	Тяжение проводника, Н	(ника	Н,					Č	грель	и пров	seca, n	1, при	Стрелы провеса, м, при температуре,	ерату	pe, ^o C				
Z	Режим	ВГ	В	-5Γ	t _{min} ,	ter,	t _{max} ,	-40	-20	-15	-10	٠٠	0	+5	+10	+5 +10 +15 +20		+25	+30	+35	+40	-5Г
20	t_{min}	4714	5398	3845	7000	4714 5398 3845 7000 2359 1547		0,11	0,20	0,23	0,11 0,20 0,23 0,26 0,29 0,31 0,34 0,36	0,29	0,31	0,34	0,36	0,38 0,40		0,42	0,44	0,46	0,48	0,31
25	t_{\min}	5513	6306	4502	7000	5513 6309 4502 7000 2794 1892		0,16 0,29		0,32	0,35	0,38	0,41	0,44	0,47	0,32 0,35 0,38 0,41 0,44 0,47 0,49 0,52	0,52	0,54 0,56	0,56	0,59	0,61	0,41
30	P _{max}	6107	7000	4975	6637	6107 7000 4975 6637 3105 2189		0,25	0,39	0,43	0,47 0,50 0,53 0,56	0,50	0,53	0,56	0,59	0,62	0,65	89,0	0,71	0,73	0,76	0,54
35	$\mathbf{P}_{ ext{max}}$	0909	7000	4878	5050	6060 7000 4878 5050 3030 2310		0,45	0,60	0,64	0,45 0,60 0,64 0,68 0,71 0,74 0,78 0,81	0,71	0,74	0,78	0,81	0,84 0,87	0,87	68,0	0,92	0,95	76,0	0,75
40	P _{max}	6027	7000	4813	4254	6027 7000 4813 4254 2982 2402		69,0	0,85	0,88	0,92	0,95	66,0	1,02	1,05	0,69 0,85 0,88 0,92 0,95 0,99 1,02 1,05 1,08 1,11	1,11	1,14 1,17	1,17	1,20	1,22	0,99
45	P _{max}	6003	7000	4768	3829	6003 7000 4768 3829 2949 2473		76,0	1,13	1,16	1,16 1,20 1,23 1,26 1,30	1,23	1,26	1,30	1,33	1,33 1,36 1,39	1,39	1,42	1,45	1,48	1,51	1,27
50	$\mathbf{P}_{ ext{max}}$	5885	7000	4735	3576	5985 7000 4735 3576 2925 2529		1,29	1,43	1,47	1,50	1,54	1,57	1,60	1,64	1,29 1,43 1,47 1,50 1,54 1,57 1,60 1,64 1,67 1,70 1,73 1,76 1,79	1,70	1,73	1,76	1,79	1,82	1,58
55	$\mathbf{P}_{\mathrm{max}}$	5993	7000	4744	3445	5993 7000 4744 3445 2929 2587		1,61	1,76	1,80	1,83	1,87	1,90	1,93	1,96	1,61 1,76 1,80 1,83 1,87 1,90 1,93 1,96 2,00 2,03	2,03	2,06 2,09	2,09	2,12	2,15	1,91
09	P_{max}	6005	7000	4758	3359	6005 7000 4758 3359 2936 2638	_	1,97 2,12	2,12	2,15	2,15 2,19 2,22 2,25 2,29	2,22	2,25	2,29	2,32	2,35 2,38	2,38	2,42	2,45	2,48	2,51	2,26
65	$\mathbf{P}_{\mathrm{max}}$	6020	7000	4777	3302	6020 7000 4777 3302 2947 2684		2,35	2,50	2,53	2,57	2,60	2,64	2,67	2,70	2,35 2,50 2,53 2,57 2,60 2,64 2,67 2,70 2,74 2,77 2,80 2,83	2,77	2,80	2,83	2,86	2,89	2,64
70	P _{max}	6036	7000	4799	3264	6036 7000 4799 3264 2960 2726	2726	2,76	2,91	2,94	2,98	3,01	3,04	3,08	3,11	2,76 2,91 2,94 2,98 3,01 3,04 3,08 3,11 3,14 3,18 3,21 3,24 3,24 3,37 3,31	3,18	3,21	3,24	3,27	3,31	3,05

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.15

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район $b_{_{\rm 9}}\!=15~{\rm MM}$

 $T_{\text{сг_доп}} = 7000$ H; $\sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 33,3$ H/мм² $T_{p_{\rm Hol}} = 7000~H;~\sigma_{p_{\rm Hol}} = T_{p_{\rm Hol}}/S = 33,3~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	Гяжение проводника, Н	ника	H,					C	Стрелы провеса, м, при температуре, ^о С	ирон	seca, n	4, прв	Темп	ерату	pe, oc	()			
×	Режим	BΓ	В	-5Γ	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5T
20	t_{min}	5507	5398	4605	7000	5507 5398 4605 7000 2359 1547	1547	0,11	0,20 0,23		0,26 0,29 0,31 0,34 0,36 0,38 0,40 0,42	0,29	0,31	0,34	0,36	0,38	0,40	0,42	0,44	0,46	0,48	0,32
25	tmin	6437	6306	5386	7000	6437 6309 5386 7000 2794 1892	1892	0,16	0,29	0,32	0,35 0,38 0,41 0,44	0,38	0,41		0,47 0,49		0,52	0,54	0,56	0,59	0,61	0,43
30	Pmax	2000	6889	5832	6246	6859 5832 6246 3023 2157	2157	0,26	0,41	0,45	0,48	0,52	0,55	0,58	0,61	0,64	99,0	69,0	0,72	0,74	0,77	0,58
35	\mathbf{P}_{\max}	7000	6851	5774	4774	7000 6851 5774 4774 2950 2273	2273	0,47	0,63 0,66		0,70 0,73 0,76 0,79 0,83 0,85 0,88 0,91	0,73	0,76	0,79	0,83	0,85	0,88	0,91	0,94	0,97	66,0	0,79
40	Pmax	7000	6845	5734	4057	7000 6845 5734 4057 2904 2360	2360	0,73	0,88 0,91		0,95 0,98 1,01 1,04 1,08 1,11	86,0	1,01	1,04	1,08		1,14 1,16	1,16	1,19	1,22	1,25	1,04
45	Pmax	7000	6841	5706	3674	7000 6841 5706 3674 2872 2427	2427	1,01	1,16	1,20	1,23	1,26	1,30	1,33	1,36 1,39	1,39	1,42	1,45	1,48	1,51	1,53	1,32
50	\mathbf{P}_{\max}	7000	6839	5885	3444	7000 6839 5685 3444 2850 2479	2479	1,33	1,48	1,51 1,55	1,55	1,58 1,61 1,65 1,68 1,71 1,74 1,77	1,61	1,65	1,68	1,71	1,74	1,77	1,80	1,83	1,85	1,64
55	\mathbf{P}_{max}	7000	6811	5686	3308	7000 6811 5686 3308 2842 2526	2526	1,68	1,82	1,86	1,82 1,86 1,89 1,92 1,96 1,99 2,02 2,05	1,92	1,96	1,99	2,02	2,05	2,08	2,11	2,14	2,17	2,20	1,99
09	\mathbf{P}_{\max}	7000	6783	2690	3216	7000 6783 5690 3216 2838 2566	2566	2,06	2,20	2,23	2,27	2,30	2,33	3,36	2,33 3,36 2,40 2,43		2,46	2,49	2,52	2,55	2,58	2,36
9	$\mathbf{P}_{ ext{max}}$	7000	6755	2692	3151	7000 6755 5697 3151 2837 2600	2600	2,47	2,61 2,64		2,67	2,71 2,74 2,77	2,74	2,77	2,80 2,83		2,87	2,90	2,93	2,96	2,99	2,77
70	Pmax	7000	6727	5707	3103	7000 6727 5707 3103 2837 2629	2629	2,90	3,04 3,08		3,11 3,14 3,18 3,21 3,24 3,27 3,30 3,33 3,37 3,40	3,14	3,18	3,21	3,24	3,27	3,30	3,33	3,37	3,40	3,43	3,20

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.16

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры Максимальное (нормативное) тяжение проводника:

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{сг_доп}} = 7000$ H; $\sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 33,3$ H/мм² $T_{p_{\rm Hol}} = 7000~H;~\sigma_{p_{\rm Hol}} = T_{p_{\rm Hol}}/S = 33,3~H/{\rm MM}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	трель	одп г	seca, n	4, прв	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	<i>T</i> >			
M	Режим	BΓ	В	-5T	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Г
20	tmin	8089	5398	6011	6808 5398 6011 7000 2359	2359	1547	0,11	0,20	0,23	0,26	0,29	0,31	0,34	0,36	0,38	0,40	0,42	0,44	0,46	0,48	0,35
25	tmin	7000	5454	6123	7000 5454 6123 4460 2323 1714	2323		0,26 0,39		0,41 0,44		0,47 0,49	0,49	0,52 0,54	0,54	0,57 0,59	0,59	0,61 0,63	0,63	0,65	0,67	0,53
30	Pmax	7000	5382	6209	7000 5382 6079 3274 2251 1806	2251		0,51	0,63	99,0	89,0	0,71	0,74	0,76	0,78	0,81	0,83	0,85	0,87	0,90	0,92	0,77
35	$\mathbf{P}_{ ext{max}}$	2000	5337	0509	7000 5337 6050 2821 2210 1870	2210	_	0,80 0,91		0,94 0,97	0,97	0,99 1,02		1,04	1,07	1,09	1,12	1,14 1,16	1,16	1,18	1,20	1,06
40	$\mathbf{P}_{\mathrm{max}}$	7000	5306	6031	7000 5306 6031 2598 2183 1917	2183		1,13 1,24		1,27 1,30	1,30	1,32 1,35 1,37 1,40	1,35	1,37	1,40	1,42 1,44	1,44	1,47 1,49	1,49	1,51	1,53	1,39
45	Pmax	7000	5285	6018	7000 5285 6018 2468 2165 1951	2165		1,51 1,62		1,64	1,67	1,69	1,72	1,74	1,77	1,79	1,82	1,84	1,86	1,89	1,91	1,76
50	$\mathbf{P}_{ ext{max}}$	2000	5270	8009	7000 5270 6008 2385 2153 1976	2153		1,93 2,03		2,06 2,09		2,11 2,14	2,14	2,16	2,16 2,18 2,21	2,21	2,23	2,26 2,28	2,28	2,30	2,33	2,17
55	$\mathbf{P}_{\mathrm{max}}$	7000	5235	6014	7000 5235 6014 2335 2149 2000	2149		2,38	2,49	2,51	2,54	2,56 2,59		2,61	2,64	2,66	2,69	2,71	2,73	2,76	2,78	2,63
09	$\mathbf{P}_{\mathrm{max}}$	7000	5202	6022	7000 5202 6022 2300 2146 2020	2146		2,88	2,98	3,01 3,03		3,06 3,08	3,08	3,11	3,13	3,16 3,18	3,18	3,21	3,23	3,25	3,28	3,12
9	$\mathbf{P}_{\mathrm{max}}$	7000	5171	6031	7000 5171 6031 2275 2146 2037	2146		3,42	3,52	3,54	3,57	3,60	3,62	3,64	3,67	3,42 3,52 3,54 3,57 3,60 3,62 3,64 3,67 3,69 3,72	3,72	3,74 3,77	3,77	3,79	3,81	3,66
70	P _{max}	7000	5141	6041	7000 5141 6041 2257 2147 2051	2147		3,99	4,10	4,12	4,15	4,17	4,20	4,22	4,25	4,27	4,30	4,32	4,34	4,37	4,39	4,24

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.17

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10 Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры Максимальное (нормативное) тяжение проводника:

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район $b_{_{3}}\!=25~\mathrm{MM}$

 $T_{\text{сг_доп}} = 7000~\text{H};~\sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 33,3~\text{H/M}^2$ $T_{p_{\rm Hol}} = 7000~H;~\sigma_{p_{\rm Hol}} = T_{p_{\rm Hol}}/S = 33,3~H/{\rm MM}^2$

Пролет,		Тяже	Гяжение проводника,	ровод	ника,	Н					C	грель	ирон	seca, 1	4, прв	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	<i>T</i> \			
W.	Режим	Bľ	В	-5T	t _{min} ,	ter,	t _{max} ,	-40	-20	-15	-10	<u>ئ</u>	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Γ
20	tmin	7000	4690	6252	7000 4690 6252 4441 1980 1416	1980		0,17	0,28	0,30	0,33	0,35	0,37	0,39	0,41	0,35 0,37 0,39 0,41 0,43 0,45 0,47 0,49 0,50	0,45	0,47	0,49		0,52	0,41
25	tmin	7000	4564	6203	7000 4564 6203 2792 1891 1511	1891		0,41	0,52	0,54	0,56	0,59	0,61	0,63	0,65	$0.54 \left \right. 0,56 \left \right. 0,59 \left \right. 0,61 \left \right. 0,63 \left \right. 0,65 \left \right. 0,67 \left \right. 0,69 \left \right. 0,71 \left \right. 0,73 \left \right. 0,74$	69,0	0,71	0,73	0,74	0,76	0,65
30	P _{max}	7000	4495	6175	7000 4495 6175 2327 1846 1572	1846		0,71	0,81	0,83	0,85	0,88	0,90	0,92	0,94	0,96 0,98		1,00	1,02	1,03	1,05	0,93
35	P _{max}	7000	4452	6156	7000 4452 6156 2127 1819 1613	1819		1,06	1,15	1,17	1,20	1,22	1,24	1,26	1,28	1,06 1,15 1,17 1,20 1,22 1,24 1,26 1,28 1,30 1,32 1,34 1,36 1,38 1,40	1,32	1,34	1,36	1,38	1,40	1,28
40	P _{max}	7000	4425	6144	7000 4425 6144 2019 1802 1642	1802		1,46 1,55 1,57 1,59	1,55	1,57	1,59	1,61	1,63	1,65	1,67	1,61 1,63 1,65 1,67 1,69 1,71 1,73 1,75 1,77	1,71	1,73	1,75	1,77	1,79	1,67
45	P _{max}	7000	4406	6136	7000 4406 6136 1954 1791	1791	1663	1,91	1,99	2,02	2,04	2,06	2,08	2,10	2,12	2,14	2,16	2,18	2,20	2,22	2,24	2,12
50	P _{max}	7000	4392	6130	7000 4392 6130 1910 1783 1678	1783	_	2,41 2,49 2,52 2,54 2,56 2,58 2,60 2,62 2,64 2,66 2,68 2,70 2,72	2,49	2,52	2,54	2,56	2,58	2,60	2,62	2,64	2,66	2,68	2,70		2,74	2,62
55	P _{max}	7000	4361	6137	7000 4361 6137 1883 1781 1693	1781	_	2,95 3,04	3,04	3,06 3,08	3,08	3,10	3,12	3,14	3,16	3,10 3,12 3,14 3,16 3,19 3,21 3,23 3,25 3,27	3,21	3,23	3,25	3,27	3,29	3,16
09	P _{max}	7000	4332	6146	7000 4332 6146 1865 1780 1705	1780		3,55	3,64	3,66	3,68	3,70	3,72 3,74	3,74	3,76	3,78 3,80 3,82	3,80	3,82	3,84	3,86	3,88	3,76
65	P _{max}	7000	4304	6155	7000 4304 6155 1852 1780 1716	1780	_	4,20 4,28 4,30 4,32 4,34 4,36 4,39 4,41 4,43 4,45 4,47 4,49 4,51	4,28	4,30	4,32	4,34	4,36	4,39	4,41	4,43	4,45	4,47	4,49	4,51	4,53	4,40
70	Pmax	7000	4278	6165	7000 4278 6165 1842 1781 1725	1781		4,89	4,98	5,00	5,05	5,04	5,06	5,08	5,10	$5,06 \ \ 5,08 \ \ 5,10 \ \ 5,12 \ \ 5,14 \ \ 5,16 \ \ 5,18 \ \ 5,20 \ \ 5,22$	5,14	5,16	5,18	5,20		5,10

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.18

Монтажные таблицы универсального кабеля АХСЕЅ™ 3х95/25-20

Район по гололеду

Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{\text{cl_don}} = 7000 \; H; \; \sigma_{\text{cl_don}} = T_{\text{cl_don}} / S = 24,6 \; H/\text{mm}^2$ $T_{p_\pi o \pi} = 7000 \; H; \; \sigma_{p_\pi o \pi} = T_{p_\pi o \pi} / S = 24,6 \; H/m M^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника,	Н,					C	грель	ирон	seca, n	1, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	<i>T</i> >			
W	Режим	BΓ	В	-5T	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Γ
20	tmin	5386	6122	4580	5386 6122 4580 7000 3022 2125	3022	2125	0,15 0,26	0,26	0,29	0,31 0,33 0,36 0,38 0,40 0,42 0,44 0,46 0,47 0,49	0,33	0,36	0,38	0,40	0,42	0,44	0,46	0,47	0,49	0,51 0,35	0,35
25	tmin	6153	7000	5226	6153 7000 5226 6709 3476 2546	3476		0,25 0,38	0,38	$0,40 \mid 0,43 \mid 0,46 \mid 0,48 \mid 0,51 \mid 0,53 \mid 0,56 \mid 0,58 \mid 0,60 \mid 0,62 \mid 0,64$	0,43	0,46	0,48	0,51	0,53	0,56	0,58	0,60	0,62		99,0	0,48
30	P _{max}	6114	7000	5153	6114 7000 5153 5145 3433 2720	3433		0,47	0,60	0,63	0,65	0,68	0,71 0,73	0,73	0,76	0,76 0,78 0,80	0,80	0,83	0,85	0,87	0,89	0,70
35	P _{max}	6809	7000	5108	6089 7000 5108 4472 3407 2845	3407		0,74 0,86	0,86	0,89 0,92	0,92	0,94	0,97	1,00	1,02	0,94 0,97 1,00 1,02 1,05 1,07 1,09 1,12 1,14 1,16	1,07	1,09	1,12	1,14		0,97
40	P _{max}	6072	7000	5078	6072 7000 5078 4126 3390 2938	3390		1,05 1,16 1,19 1,22	1,16	1,19	1,22	1,25	1,27	1,30	1,32	1,25 1,27 1,30 1,32 1,35 1,37 1,40 1,42 1,15	1,37	1,40	1,42	1,15	1,47	1,27
45	Pmax	0909	7000	5057	6060 7000 5057 3922 3378 3008	3378		1,39	1,51	1,54	1,56	1,59	1,62	1,64	1,67	1,69 1,72	1,72	1,74	1,77	1,79	1,82	1,61
50	\mathbf{P}_{\max}	6052	7000	5041	6052 7000 5041 3791 3370 3062	3370		1,78 1,89 1,92 1,95 1,97 2,00 2,03 2,05 2,08 2,10 2,13	1,89	1,92	1,95	1,97	2,00	2,03	2,05	2,08	2,10	2,13	2,15	2,15 2,18	2,20	2,00
55	\mathbf{P}_{\max}	8909	7000	5063	6068 7000 5063 3729 3385 3121	3385	3121	2,19 2,30	2,30	2,33 2,36 2,38 2,41 2,44 2,46 2,49 2,51 2,54 2,56 2,59 2,61	2,36	2,38	2,41	2,44	2,46	2,49	2,51	2,54	2,56	2,59		2,41
09	\mathbf{p}_{\max}	9809	7000	5087	6086 7000 5087 3690 3402 3172	3402		2,63	2,74	2,77 2,80		2,83	2,85	2,88	2,91	2,93 2,96	2,96	2,98	3,01 3,04		3,06	2,85
65	\mathbf{P}_{\max}	6106	7000	5113	6106 7000 5113 3666 3421 3218	3421		3,11 3,22 3,25 3,28 3,30 3,33 3,36 3,38	3,22	3,25	3,28	3,30	3,33	3,36	3,38	3,41 3,44 3,46 3,49 3,51 3,54	3,44	3,46	3,49	3,51	3,54	3,33
70	$\mathbf{P}_{ ext{max}}$	6127	7000	5141	6127 7000 5141 3653 3440 3260	3440		3,62 3,73 3,76 3,79 3,81 3,84 3,87 3,90 3,92 3,95 3,97 4,00 4,03	3,73	3,76	3,79	3,81	3,84	3,87	3,90	3,92	3,95	3,97	4,00	4,03	4,05	3,84

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.19

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х95/25-20

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район $b_{_{\rm 9}}\!=15~{\rm MM}$

 $T_{\text{cl_don}} = 7000 \; H; \; \sigma_{\text{cl_don}} = T_{\text{cl_don}} / S = 24,6 \; H/\text{mm}^2$ $T_{p_\pi o \pi} = 7000 \; H; \; \sigma_{p_\pi o \pi} = T_{p_\pi o \pi} / S = 24,6 \; H/m M^2$

Тяж	Тяж	e	ние п	ровод	Тяжение проводника, Н	Н					Ċ	трель	пров	seca, n	4, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o (7)			
Режим В	В	ВГ	В	-5T	t _{min} , -40	tcr,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15 +20		+25	+30	+35	+40	-5Г
t _{min} 6	9	227	6122	6227 6122 5380	7000	3022 2125	2125	0,15 0,26		0,29	0,31	0,33	0,36	0,38	0,40	0,36 0,38 0,40 0,42 0,44		0,46 0,47		0,49	0,51	0,36
t _{min}		2000	6881	6035	7000 6881 6035 6395 3407 2517	3407		0,26 0,39	0,39	0,42 0,44	0,44	0,47	0,49	0,52	0,54	0,47 0,49 0,52 0,54 0,57 0,59 0,61 0,63	0,59	0,61	0,63	0,65	0,67	0,50
Pmax		7000	6875	5993	7000 6875 5993 4948	3365 2684		0,49	0,61	0,64	0,67	0,70	0,72	0,75	0,77	0,79	0,82	0,84	98,0	0,88	0,90	0,73
Pmax	_	7000	6871	9969	7000 6871 5966 4328 3339 2805	3339		0,76	0,88	0,91	0,76 0,88 0,91 0,94 0,96 0,99 1,01 1,04 1,06 1,09 1,11 1,11 1,13 1,16 1,18	96,0	66,0	1,01	1,04	1,06	1,09	1,11	1,13	1,16		1,00
P_{max}		2000	6989	5948	7000 6869 5948 4008 3322 2893	3322		1,08	1,19	1,22	1,19 1,22 1,25 1,27 1,30 1,32 1,35 1,37 1,40 1,42 1,45 1,47 1,49	1,27	1,30	1,32	1,35	1,37	1,40	1,42	1,45	1,47		1,31
Pmax		2000	2989	5935	6867 5935 3819 3310	3310	2960	1,43	1,54	1,57	1,60	1,62	1,65	1,68	1,70 1,73	1,73	1,75 1,77	1,77	1,80	1,82	1,85	1,66
P_{max}		2000	9989	5926	7000 6866 5926 3696 3302 3010	3302		1,82	1,94	1,96	1,82 1,94 1,96 1,99 2,02 2,04 2,07 2,09 2,12 2,14 2,17 2,19 2,22	2,02	2,04	2,07	2,09	2,12	2,14	2,17	2,19	2,22	2,24	2,05
P_{max}		7000	6838	5934	7000 6838 5934 3622 3304 3056	3304		2,25	2,36	2,39	2,25 2,36 2,39 2,42 2,44	2,44	2,47	2,49	2,52	2,47 2,49 2,52 2,55 2,57 2,60 2,62 2,64 2,67	2,57	2,60	2,62	2,64		2,48
P_{max}		7000	6810	5943	7000 6810 5943 3570 3307 3095	3307		2,72	2,83	2,86	2,88	2,91	2,94	2,96 2,99	2,99	3,01 3,04		3,06 3,09		3,11	3,14	2,94
P_{max}		7000	6782	5953	7000 6782 5953 3533 3312 3127	3312	_	3,23	3,33	3,36	3,23 3,33 3,36 3,39 3,41 3,44 3,47 3,49 3,52 3,54 3,57 3,59 3,62 3,64	3,41	3,44	3,47	3,49	3,52	3,54	3,57	3,59	3,62		3,45
P_{max}		2000	6754	5964	7000 6754 5964 3506 3317 3155	3317		3,77	3,88	3,90	3,77 3,88 3,90 3,93 3,96 3,98 4,01 4,04 4,06 4,09 4,11 4,14 4,16 4,16 4,19 3,99	3,96	3,98	4,01	4,04	4,06	4,09	4,11	4,14	4,16	4,19	3,99
	ı																					

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.20

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х95/25-20

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{cl_don}} = 7000 \; H; \; \sigma_{\text{cl_don}} = T_{\text{cl_don}} / S = 24,6 \; H/\text{mm}^2$ $T_{p_\pi o \pi} = 7000 \; H; \; \sigma_{p_\pi o \pi} = T_{p_\pi o \pi} / S = 24,6 \; H/m M^2$

Пролет,		Тяже	ние п	ровод	Тяжение проводника, Н	H,					Ö	Стрелы провеса, м, при температуре,	пров	eca, M	г, при	темп	ерату	pe, °C				
W	Режим	Bľ	В	-5Г	t _{min} ,	ter,	t _{max} ,	-40	-20	-15	-10	٠-	0	+5+	+10	+15 +20		+25	+30	+35	+40	-5Г
20	t _{min}	2000	5545	6270	7000 5545 6270 5192 2700		1998	0,21 0,31	0,31	0,34	0,36 0,38		0,40	0,42 0,44		0,46	0,47	0,49	0,51	0,52	0,54	0,42
25	tmin	7000	5477	6233	3719	7000 5477 6233 3719 2644 2149		0,45	0,55	0,57	0,45 0,55 0,57 0,60 0,62 0,64 0,66 0,68	0,62	0,64	99,0	89,0	0,70	0,71	0,73 0,75	0,75	0,77	0,78	0,65
30	Pmax	7000	5439	6211	3232	7000 5439 6211 3232 2614 2248		0,75	0,84	0,87	68,0	0,91	0,93	0,95	0,97	660	1,01	1,03	1,04	1,06	1,08	0,95
35	Pmax	7000	5415	6198	3005	7000 5415 6198 3005 2596 2316		1,10	1,19	1,21	1,10 1,19 1,21 1,23 1,25 1,27 1,29 1,31	1,25	1,27	1,29	1,31	1,33	1,35	1,33 1,35 1,37 1,39 1,41	1,39	1,41	1,43	1,29
40	P _{max}	7000	5399	6189	2879	7000 5399 6189 2879 2584 2363		1,50	1,59	1,61	1,50 1,59 1,61 1,63 1,65 1,67 1,69 1,71	1,65	1,67	1,69	1,71	1,73	1,75	1,73 1,75 1,77 1,79	1,79	1,81	1,83	1,69
45	Pmax	7000	5388	6183	2799	7000 5388 6183 2799 2576 2398		1,95	2,04	2,06	2,08	2,10	2,12	2,14	2,16	2,18	2,20	2,22	2,24	2,26	2,28	2,14
50	P _{max}	7000	5381	6178	2746	7000 5381 6178 2746 2570 2424		2,46	2,54	2,56	2,46 2,54 2,56 2,58 2,60 2,62 2,64 2,66	2,60	2,62	2,64	2,66	2,68	2,70	2,72 2,74	2,74	2,76	2,78	2,64
55	P _{max}	7000	5351	6186	2714	7000 5351 6186 2714 2571 2448		3,01 3,09		3,11 3,13	3,13	3,15 3,17 3,19 3,21	3,17	3,19	3,21	3,23	3,25	3,23 3,25 3,27 3,29	3,29	3,31	3,33	3,19
09	P _{max}	7000	5322	6195	2692	7000 5322 6195 2692 2573 2468		3,61 3,69		3,71	3,73	3,75 3,77	3,77	3,79	3,81	3,83	3,85	3,87	3,89	3,91	3,93	3,79
65	P _{max}	7000	5294	6205	2676	7000 5294 6205 2676 2575 2485		4,26	4,34	4,36	4,26 4,34 4,36 4,38 4,40 4,43 4,45 4,47 4,49 4,51 4,53 4,55 4,57	4,40	4,43	4,45	4,47	4,49	4,51	4,53	4,55	4,57	4,59	4,44
70	P _{max}	7000	5267	6214	2664	7000 5267 6214 2664 2578 2499		4,96 5,04	5,04	5,06 5,09	5,09	5,11 5,13 5,15 5,17 5,19 5,21 5,23 5,25 5,27	5,13	5,15	5,17	5,19	5,21	5,23	5,25	5,27	5,29	5,14

ОДНОЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.21

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х95/25-20

Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры Максимальное (нормативное) тяжение проводника:

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{3}}\!=25~\mathrm{MM}$

 $T_{p_\pi o \pi} = 7000 \; H; \; \sigma_{p_\pi o \pi} = T_{p_\pi o \pi} / S = 24,6 \; H/m M^2$

 $T_{\text{cl_don}} = 7000 \; H; \; \sigma_{\text{cl_don}} = T_{\text{cl_don}} / S = 24,6 \; H/\text{mm}^2$

 $\gamma_{\text{PB}}=1,0$

PexktM BT B -ST Lmin (1) -40 -20 -15 -10 -5 0 +5 +10 t _{min} 7000 4719 6332 3434 2266 1797 0,31 0,40 0,42 0,44 0,46 0,48 0,49 0,51 t _{min} 7000 4651 6307 2788 2266 1903 0,60 0,68 0,70 0,74 0,46 0,49 0,57 P _{max} 7000 4614 6293 2546 2204 1970 0,95 1,03 1,05 1,07 1,08 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,14 1,45 1,47 1,49 4,51 1,52 1,54 P _{max} 7000 4567 6274 2362 2182 2264 1,83 1,91 1,92 1,94 1,96 1,99 2,51 3,54 P _{max}	Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	грель	Стрелы провеса, м, при температуре, ^о С	eca, N	ı, при	темп	ерату	pe, ^o C	<i>T</i> \			
tmin 7000 4719 6332 3434 2266 1797 tmin 7000 4651 6307 2788 2266 1903 Pmax 7000 4614 6293 2546 2204 1970 Pmax 7000 4592 6284 2425 2192 2014 Pmax 7000 4577 6278 2354 2183 2045 Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4567 6274 2309 2174 2083 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4483 6297 2238 2178 2122	¥	Режим		В	-5T	t _{min} ,	ter,	t _{max} ,	-40		-15				+5	+10	+15 +20		+25 +30	+30	+35	+40	-5Г
tmin 7000 4651 6307 2788 2266 1903 Pmax 7000 4614 6293 2546 2204 1970 Pmax 7000 4592 6284 2425 2192 2014 Pmax 7000 4577 6278 2354 2183 2045 Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4560 6271 2277 2174 2098 Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4488 6306 2231 2180 2131	20	t _{min}	7000	4719	6332	3434	2266		0,31	0,40	0,42	0,44	0,46	0,48	0,49	0,51	0,53	0,54	0,53 0,54 0,56 0,57	0,57	0,59	0,60	0,49
Pmax 7000 4614 6293 2546 2204 1970 Pmax 7000 4592 6284 2425 2192 2014 Pmax 7000 4577 6278 2354 2183 2045 Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4560 6271 2277 2174 2083 Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	25	tmin	7000	4651	6307	2788	2266	1903	09,0		0,70	0,72	0,74	0,76	0,77		0,81	0,82	0,84	98,0	0,87	0,89	0,78
Pmax 7000 4592 6284 2425 2192 2014 Pmax 7000 4577 6278 2354 2183 2045 Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4560 6271 2277 2174 2098 Pmax 7000 4507 6288 2247 2174 2098 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4483 6306 2231 2180 2131	30	Pmax	7000	4614	6293	2546	2204	1970	0,95	1,03	1,05	1,07	1,08	1,10	1,12	1,14	1,15	1,17	1,18	1,20	1,22	1,23	1,12
Pmax 7000 4577 6278 2354 2183 2045 Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4560 6271 2277 2174 2083 Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	35	Pmax	7000	4592	6284	2425	2192		1,36	1,44	1,45	1,47	1,49	4,51	1,52	1,54	1,56	1,58	1,59	1,61	1,62	1,64	1,53
Pmax 7000 4567 6274 2309 2178 2067 Pmax 7000 4560 6271 2277 2174 2083 Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	40	Pmax	7000	4577	6278	2354	2183		1,83	1,91	1,92	1,94	1,96	1,98	1,99	2,01	2,03	2,04	2,06	2,08	2,09	2,11	1,99
Pmax 7000 4560 6271 2277 2174 2083 Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	45	Pmax	7000	4567	6274	2309	2178	_	2,37	2,44	2,46	2,47	2,49	2,51	2,53	2,54	2,56	2,58	2,59	2,61	2,63	2,64	2,53
Pmax 7000 4533 6279 2259 2174 2098 Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	95	Pmax	7000	4560	6271	2277	2174		2,96		3,05	3,07	3,08	3,10	3,12	3,14	3,15	3,17	3,19 3,20	3,20	3,22	3,24	3,12
Pmax 7000 4507 6288 2247 2176 2111 Pmax 7000 4483 6297 2238 2178 2122 Pmax 7000 4458 6306 2231 2180 2131	25	P _{max}	7000	4533	6279	2259	2174		3,61	3,68	3,70	3,72	3,73	3,75	3,77	3,79	3,80	3,82	3,84	3,85	3,87	3,89	3,77
P _{max} 7000 4483 6297 2238 2178 2122 P _{max} 7000 4458 6306 2231 2180 2131	09	\mathbf{P}_{\max}	7000	4507	6288	2247	2176		4,32	4,39	4,41	4,43	4,44	4,46	4,48	4,50	4,51	4,53	4,55	4,57	4,58	4,60	4,48
P _{max} 7000 4458 6306 2231 2180 2131	65	\mathbf{P}_{\max}	7000	4483	6297	2238	2178	_	5,09	5,16	5,18	5,20	5,22	5,23	5,25	5,27	5,28	5,30	5,32	5,34	5,35	5,37	5,25
	70	\mathbf{P}_{\max}	7000	4458	9089	2231	2180		5,92	5,99	6,01	6,03	6,05	90,9	80,9	6,10	6,11	6,13	6,15 6,17	6,17	6,18	6,20	80,9

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.22

Монтажные таблицы универсального кабеля EXCEL 3х10/10-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{p_{\rm H}01} = 5200~H;~\sigma_{p_{\rm H}01} = T_{p_{\rm H}01}/S = 173,3~H/{\rm MM}^2$

 $T_{\text{Cl_don}} = 5200 \text{ H; } \sigma_{\text{Cl_don}} = T_{\text{Cl_don}} / S = 173,3 \text{ H/mm}^2$

 $\gamma_{\text{PB}}=1,0$ $\gamma p_\Gamma = 1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника,						Č	грель	ирон	seca, n	1, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	<i>T</i> \			
W	Режим	Bľ	В	-5T	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-S-	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Γ
20	tmin	4414	4639	3850	4414 4639 3850 5200 2852 1460	2852		80,0	0,10	0,11 0,12	0,12	0,13	0,14	0,16	0,17	0,14 0,16 0,17 0,19 0,20 0,22	0,20	0,22	0,24 0,26	0,26	0,28	0,22
25	tmin	4840	5110	4156	4840 5110 4156 5200 2973 1684	2973		0,12	0,16	0,17	0,18	0,20	0,21	0,23	0,25	0,17 0,18 0,20 0,21 0,23 0,25 0,27 0,29 0,31 0,33 0,36 0,38	0,29	0,31	0,33	0,36	0,38	0,32
30	Pmax	4880	5200	4054	4880 5200 4054 4522 2640 1689	2640		0,20	0,26	0,28	0,30	0,32	0,35 0,37	0,37	0,39	0,42 0,44	0,44	0,47	0,49	0,52	0,54	0,48
35	Pmax	4838	5200	3896	4838 5200 3896 3706 2318 1657	2318		0,34	0,43	0,46 0,48	0,48	0,51	0,54	0,57	0,59	0,51 0,54 0,57 0,59 0,62 0,65 0,67 0,70 0,73	0,65	0,67	0,70	0,73	0,75	0,68
40	Pmax	4805	5200	3777	4805 5200 3777 3047 2108 1635	2108		$0,53 \ \left \ 0,65 \ \right \ 0,68 \ \left \ 0,71 \ \right \ 0,77 \ \left \ 0,80 \ \right \ 0,83 \ \left \ 0,86 \ \right \ 0,91 \ \left \ 0,94 \ \right \ 0,97 \ \right $	0,65	89,0	0,71	0,74	0,77	0,80	0,83	98,0	0,89	0,91	0,94		1,00	0,91
45	Pmax	4779	5200	3688	4779 5200 3688 2602 1972 1620	1972		0,79	0,92	0,95	0,98	1,01	1,04 1,07	1,07	1,10	1,13 1,16	1,16	1,19 1,22		1,25	1,27	1,19
50	\mathbf{P}_{\max}	4759	5200	3620	4759 5200 3620 2320 1881 1608	1881		$1,10 \ \ \ 1,23 \ \ \ 1,26 \ \ \ 1,29 \ \ \ 1,32 \ \ \ 1,38 \ \ \ 1,41 \ \ \ 1,44 \ \ \ 1,47 \ \ \ 1,50 \ \ \ 1,53 \ \ \ 1,58 \ \ \ 1,58 \ \ $	1,23	1,26	1,29	1,32	1,35	1,38	1,41	1,44	1,47	1,50	1,53	1,55		1,49
55	\mathbf{P}_{\max}	4757	5200	3595	4757 5200 3595 2165 1834 1612	1834		1,42 1,55 1,58 1,62	1,55	1,58	1,62	1,65	1,68	1,71	1,74	1,65 1,68 1,71 1,74 1,77 1,80	1,80	1,83 1,85 1,88	1,85	1,88	1,91	1,82
09	\mathbf{P}_{\max}	4759	5200	3582	4759 5200 3582 2063 1803 1617	1803		1,78	1,91	1,94	1,97	2,00	2,03 2,06 2,09	2,06	2,09	2,12 2,15 2,18	2,15	2,18	2,21 2,24		2,27	2,17
65	\mathbf{P}_{\max}	4764	5200	3577	4764 5200 3577 1994 1783 1624	1783		2,16 2,29 2,32 2,35 2,38 2,41 2,44 2,47 2,50 2,53 2,56 2,59 2,62	2,29	2,32	2,35	2,38	2,41	2,44	2,47	2,50	2,53	2,56	2,59	2,62	2,65	2,55
70	\mathbf{P}_{\max}	4772	5200	3578	4772 5200 3578 1946 1770 1632	1770		2,56 2,69 2,72 2,75 2,79 2,82 2,85 2,88 2,91 2,94 2,97 3,00 3,03 3,05	2,69	2,72	2,75	2,79	2,82	2,85	2,88	2,91	2,94	2,97	3,00	3,03	3,05	2,96

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.23

Монтажные таблицы универсального кабеля EXCEL 3х10/10-10

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=15~{\rm MM}$

 $T_{\text{сг_доп}} = 5200~\text{H};~\sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 173,3~\text{H/мм}^2$ $T_{p_{\rm H}01} = 5200~H;~\sigma_{p_{\rm H}01} = T_{p_{\rm H}01}/S = 173,3~H/{\rm MM}^2$

 $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					Ú	грель	прое	seca, n	1, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	<i>T</i> \			
W	Режим	BI	В	-5T	t _{min} ,	ter,	t _{max} ,	-40	-20	-15	-10	<u>٠</u> -	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Г
20	t_{\min}	4951	4639	4360	4951 4639 4360 5200 2852 1460	2852		0,08	0,10	0,11	0,12	0,13	0,14	0,16	0,17	0,14 0,16 0,17 0,19 0,20 0,22	0,20	0,22	0,24	0,26	0,28	0,27
25	t_{\min}	5200	4818	4473	5200 4818 4473 4654 2585 1526	2585		0,14	0,18	0,19	0,21	0,23	0,25	0,27	0,29	0,21 0,23 0,25 0,27 0,29 0,31 0,33 0,35 0,37 0,39	0,33	0,35	0,37	0,39	0,42	0,41
30	$\mathbf{P}_{ ext{max}}$	5200	4756	4351	5200 4756 4351 3633 2143 1476	2143		0,25	0,33	0,35	0,38	0,40	0,43 0,45	0,45	0,48	0,50 0,53		0,55 0,57		0,60	0,62	0,61
35	$\mathbf{P}_{ ext{max}}$	5200	4708	4260	5200 4708 4260 2804 1883 1444	1883		0,44	0,55	0,58	0,61	0,63	99,0	69,0	0,71	0,58 0,61 0,63 0,66 0,69 0,71 0,74 0,77 0,79 0,84	0,77	0,79	0,82	0,84	0,86	0,61
40	$\mathbf{P}_{ ext{max}}$	5200	4672	4192	5200 4672 4192 2290 1731 1423	1731		0,71 0,83 0,86 0,89 0,91 0,94 0,97 0,99 1,02 1,05 1,07 1,10 1,12	0,83	98,0	68,0	0,91	0,94	0,97	66,0	1,02	1,05	1,07	1,10		1,14	0,85
45	Pmax	5200	5200 4545 4142 2001	4142	2001	1636 1408		1,03	1,15	1,18	1,20	1,23	1,26 1,29	1,29	1,31	1,34	1,36	1,39	1,41	1,44	1,46	1,13
50	$\mathbf{P}_{\mathrm{max}}$	5200	4623	4104	5200 4623 4104 1829 1574 1398	1574		1,39 1,51 1,53 1,56 1,59 1,62 1,64 1,67 1,69 1,72 1,75 1,77 1,80 1,82	1,51	1,53	1,56	1,59	1,62	1,64	1,67	1,69	1,72	1,75	1,77	1,80		1,44
55	$\mathbf{P}_{ ext{max}}$	5200	4591	4088	5200 4591 4088 1729 1537 1395	1537		1,78 1,89	1,89	1,92 1,95	1,95	1,98	2,00	2,03	2,06	1,98 2,00 2,03 2,06 2,08 2,11 2,13 2,16 2,18 2,21	2,11	2,13	2,16	2,18	2,21	1,80
09	$\mathbf{P}_{ ext{max}}$	5200	4562	4079	5200 4562 4079 1662 1511 1394	1511		2,20	2,32	2,34	2,37	2,40 2,42	2,42	2,45	2,48	2,50	2,53	2,55	2,58	2,60	2,63	2,18
65	$\mathbf{P}_{\mathrm{max}}$	5200	4534	4075	5200 4534 4075 1616 1493 1394	1493		2,66 2,77 2,80 2,83 2,85 2,88 2,90 2,93 2,96 2,98 3,01 3,03 3,06 3,08	2,77	2,80	2,83	2,85	2,88	2,90	2,93	2,96	2,98	3,01	3,03	3,06		2,60
70	$\mathbf{P}_{\mathrm{max}}$	5200	4508	4075	5200 4508 4075 1582 1480 1395	1480	-	3,15 3,26 3,29 3,31 3,34 3,37 3,39 3,42 3,45 3,47 3,50 3,52 3,55 3,57	3,26	3,29	3,31	3,34	3,37	3,39	3,42	3,45	3,47	3,50	3,52	3,55	3,57	3,06

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.24

Монтажные таблицы универсального кабеля EXCEL 3x10/10-10

Район по гололеду

Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{Cl_Mon}} = 5200 \text{ H; } \sigma_{\text{Cl_Mon}} = T_{\text{cl_Mon}} / S = 173.3 \text{ H/mm}^2$ $T_{p_{\rm HOH}} = 5200~H;~\sigma_{p_{\rm HOH}} = T_{p_{\rm HOH}}/S = 173,3~H/{\rm MM}^2$

Пролет,		Тяже	ние п	ровод	Тяжение проводника, Н	Н					C	трель	и пров	seca, n	Стрелы провеса, м, при температуре, ^о С	темп	ерату	pe, ^o C	7)			
M	Режим	BΓ	В	-5F	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10 +15	+15	+20	+25	+30	+35	+40	-5Γ
20	t_{\min}	5200	3938	4668	5200 3938 4668 3870 1939	1939	1138	0,11	0,15	0,16	0,18	0,19	0,21 0,23	0,23	0,25 0,27	0,27	0,28	0,30	0,32	0,34	0,36	0,39
25	t_{\min}	5200	3722	4578	5200 3722 4578 2414 1460 1075	1460	1075	0,26	0,35 0,37	0,37	0,39 0,41	0,41	0,44	0,46	0,44 0,46 0,48 0,50 0,52 0,54 0,56 0,57	0,50	0,52	0,54	0,56	0,57	0,59	0,62
30	$\mathbf{P}_{ ext{max}}$	5200	3586	4518	5200 3586 4518 1679 1263	1263	1041	0,55	0,64	99,0	89,0	0,70	0,72 0,75 0,77	0,75	0,77	0,79	0,80	0,82	0,84	0,86	0,88	0,91
35	$\mathbf{P}_{ ext{max}}$	5200	3499	4476	5200 3499 4476 1391 1167 1022	1167	1022	06,0	86,0	0,98 1,01 1,03 1,05 1,07 1,09 1,11 1,13 1,15 1,16 1,18 1,20	1,03	1,05	1,07	1,09	1,11	1,13	1,15	1,16	1,18	1,20	1,22	1,25
40	$\mathbf{P}_{ ext{max}}$	5200	3440	4447	5200 3440 4447 1254 1113 1010	1113		1,30	1,38	1,30 1,38 1,40 1,42 1,44 1,46 1,48 1,50 1,52 1,54 1,56 1,58 1,59	1,42	1,44	1,46	1,48	1,50	1,52	1,54	1,56	1,58	1,59	1,61	1,64
45	$\mathbf{P}_{ ext{max}}$	5200	3399	4426	5200 3399 4426 1178 1079	1079	1001	1,75	1,83	1085	1,87	1,89	1,91	1,93	1,95 1,97	1,97	1,98	2,00	2,02	2,04	2,06	2,08
50	$\mathbf{P}_{\mathrm{max}}$	5200	3369	4411	5200 3369 4411 1130 1056 995	1056		2,25	2,33	2,25 2,33 2,35 2,37 2,39 2,41 2,43 2,45 2,46 2,48 2,50 2,52 2,54	2,37	2,39	2,41	2,43	2,45	2,46	2,48	2,50	2,52	2,54	2,56	2,58
55	$\mathbf{P}_{ ext{max}}$	5200	3332	4409	5200 3332 4409 1100 1043	1043	993	2,80	2,87	2,89	2,91 2,93	2,93	2,95	2,97	2,95 2,97 2,99 3,01 3,03 3,04 3,06 3,08	3,01	3,03	3,04	3,06		3,10	3,12
09	$\mathbf{P}_{ ext{max}}$	5200	3299	4411	5200 3299 4411 1080 1034	1034	993	3,39	3,47	3,49	3,51	3,52	3,54	3,56	3,51 3,52 3,54 3,56 3,58 3,60	3,60	3,62	3,64	3,65	3,67	3,69	3,71
65	$\mathbf{P}_{ ext{max}}$	5200	3269	4415	5200 3269 4415 1066 1027	1027	992	4,03	4,11	4,11 4,13 4,15 4,17 4,18 4,20 4,22 4,24 4,26 4,28 4,29 4,31	4,15	4,17	4,18	4,20	4,22	4,24	4,26	4,28	4,29	4,31	4,33	4,35
70	$\mathbf{P}_{ ext{max}}$	5200	3242	4420	5200 3242 4420 1056 1023	1023	993	4,72 4,80	4,80	4,82 4,84 4,86 4,87 4,89 4,91 4,93 4,95 4,97 4,98	4,84	4,86	4,87	4,89	4,91	4,93	4,95	4,97	4,98	5,00	5,02	5,04

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.25

Монтажные таблицы универсального кабеля EXCEL 3x10/10-10

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{3}}\!=25~\mathrm{MM}$

 $T_{p_{\rm H}01} = 5200~H;~\sigma_{p_{\rm H}01} = T_{p_{\rm H}01}/S = 173,3~H/{\rm MM}^2$

 $T_{\text{Cl_doll}} = 5200~\text{H;}~\sigma_{\text{cl_doll}} = T_{\text{cl_doll}}/S = 173,3~\text{H/mm}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	трель	ноди г	seca, n	1, при	Стрелы провеса, м, при температуре,	ерату	pe, ^o C	*.			
W	Режим	BΓ	В	-5Γ	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Г
20	t_{\min}	5200	3172	4689	5200 3172 4689 2193 1223		877	0,19 0,26		0,28 0,30		0,31 0,33		0,35 0,37	0,37	0,39 0,40		0,42 0,43		0,15	0,46	0,50
25	t_{\min}	5200	2963	4629	5200 2963 4629 1315 1006 839	1006		0,48 0,56		0,58 0,60	09,0	0,61 0,63		0,65 0,67	0,67	0,68 0,70 0,71 0,73	0,70	0,71		0,74	0,76	0,79
30	\mathbf{P}_{\max}	5200	5200 2848 4592 1067	4592		920	819	98,0	0,93	0,95	96,0	86,0	1,00	1,01	1,03	1,04	1,06	1,07	1,09	1,10	1,12	1,15
35	$\mathbf{P}_{ ext{max}}$	5200	5200 2779 4567 964	4567	\vdash	875	807	1,29 1,36 1,38 1,39 1,41 1,42 1,44 1,45 1,47 1,49	1,36	1,38	1,39	1,41	1,42	1,44	1,45	1,47	1,49	1,50 1,52		1,53	1,54	1,58
40	\mathbf{P}_{\max}	5200	5200 2734 4550 909	4550		849	800	1,79 1,85	1,85	1,87 1,89 1,90 1,92 1,93 1,95 1,96 1,98 1,99 2,01	1,89	1,90	1,92	1,93	1,95	1,96	1,98	1,99	2,01	2,02	2,04	2,07
45	\mathbf{P}_{\max}	5200	5200 2704 4538		928	832	795	2,35	2,41	2,43	2,44	2,46 2,47	2,47	2,49	2,51	2,52	2,53	2,55	2,56	2,58	2,59	2,63
50	\mathbf{P}_{\max}	5200	5200 2683 4529	4529	855	821	791	2,98 3,04		3,05 3,07	3,07	3,08	3,08 3,10 3,11 3,13 3,14	3,11	3,13	3,14	3,16 3,17 3,19	3,17	3,19	3,20	3,22	3,25
55	\mathbf{P}_{max}	5200	5200 2653 4531	4531	842	815	190	3,66 3,72		3,73 3,75 3,76 3,78 3,79 3,81 3,82 3,84 3,85 3,87	3,75	3,76	3,78	3,79	3,81	3,82	3,84	3,85	3,87	3,88	3,90	3,93
09	\mathbf{P}_{max}	5200	5200 2627 4535		832	810	190	4,40	4,46	4,48	4,49	1,51	1,51 4,52 4,54	4,54	4,55	4,55 4,56 4,58	4,58	4,59	4,61	4,62	4,64	4,67
65	$\mathbf{P}_{\mathrm{max}}$	5200	5200 2603 4541	4541	826	807	190	5,21 5,27		5,28 5,30	5,30	5,31 5,32	5,32	5,34	5,35	5,34 5,35 5,37 5,38	5,38	5,40 5,41	5,41	5,43	5,44	5,47
70	\mathbf{P}_{max}	5200	5200 2582 4547 821	4547		805	790	6,07 6,13 6,15 6,16 6,18 6,19	6,13	6,15	6,16	6,18	6,19	6,21	6,22	6,21 6,22 6,23 6,25 6,26 6,28	6,25	6,26	6,28	6,29	6,31	6,34

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.26

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

Район по гололеду Район по ветру

Максимальное (нормативное) тяжение проводника:

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{p_{\rm HOH}} = 5200~H;~\sigma_{p_{\rm HOH}} = T_{p_{\rm HOH}}/S = 108,3~H/{\rm MM}^2$

 $T_{\text{сг_доп}} = 5200 \text{ H}; \ \sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 108,3 \ \text{H/мм}^2$

 $\gamma_{\text{pB}}=1,0$

 $\gamma_{\text{pr}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	Стрелы провеса, м, при температуре, ^о С	прое	eca, n	1, при	темп	ерату	pe, ^o C	7.)			
W	Режим	BΓ	В	-5T	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5□
20	t_{min}	4575	4844	3915	5200	4575 4844 3915 5200 2635 1531		0,10	0,14	0,15	$0,15 \ \ 0,16 \ \ 0,18 \ \ 0,19 \ \ 0,21 \ \ 0,23 \ \ 0,25 \ \ 0,26 \ \ 0,28 \ \ 0,30 \ \ 0,32$	0,18	0,19	0,21	0,23	0,25	0,26	0,28	0,30	0,32	0,33	0,25
25	tmin	4881	5200	4093	4762	5200 4093 4762 2623 1712		0,17	0,23	0,24	0,26	0,28	0,30 0,32		0,35 0,37		0,39 0,41		0,43	0,45	0,47	0,38
30	P _{max}	4837	5200	3939	3747	4837 5200 3939 3747 2350 1733		0,31	0,39	0,42	$0,31 \left \ 0,39 \right \ 0,42 \left \ 0,44 \right \ 0,47 \left \ 0,49 \right \ 0,51 \left \ 0,53 \right \ 0,56 \left \ 0,58 \right \ 0,60$	0,47	0,49	0,51	0,53	0,56	0,58		0,62	0,64	0,66	0,57
35	P _{max}	4805	5200	3833	3052	4805 5200 3833 3052 2187 1748		0,51	0,61	0,64	0,51 0,61 0,64 0,67 0,69 0,71 0,74 0,76 0,78 0,81 0,83	69,0	0,71	0,74	0,76	0,78	0,81	0,83	0,85 0,87		68,0	0,79
40	$\mathbf{P}_{ ext{max}}$	4782	5200	3758	2647	4782 5200 3758 2647 2086 1758		0,77	0,88	0,90	0,93	0,95 0,98 1,00	86,0		1,03 1,05		1,07	1,09	1,12	1,14	1,16	1,05
45	$\mathbf{P}_{\mathrm{max}}$	4764	5200	3704	2409	4764 5200 3704 2409 2020 1765		1,07	1,18	1,20	$1,07 \ \ 1,18 \ \ 1,20 \ \ 1,23 \ \ 1,25 \ \ 1,28 \ \ 1,30 \ \ 1,33 \ \ 1,35 \ \ 1,37 \ \ 1,40 \ \ 1,42 \ \ 1,44$	1,25	1,28	1,30	1,33	1,35	1,37	1,40	1,42	1,44	1,46	1,35
50	$\mathbf{P}_{\mathrm{max}}$	4750	5200	3665	2261	4750 5200 3665 2261 1974 1770		1,41	1,51	1,54	1,41 1,51 1,54 1,57 1,59 1,61 1,64 1,66 1,69 1,71 1,73 1,76 1,78	1,59	1,61	1,64	1,66	1,69	1,71	1,73	1,76	1,78	1,80	1,69
55	$\mathbf{P}_{ ext{max}}$	4756	5200	3661	2183	4756 5200 3661 2183 1957 1786		1,77	1,77 1,87	1,90 1,92	1,92	1,95 1,97 1,99 2,02 2,04 2,07 2,09	1,97	1,99	2,02	2,04	2,07		2,11	2,14	2,16	2,05
09	$\mathbf{P}_{ ext{max}}$	4764	5200	3665	2132	4764 5200 3665 2132 1948 1802		2,15	2,26	2,28	2,26 2,28 2,31 2,33 2,36 2,38 2,41 2,43 2,45 2,48	2,33	2,36	2,38	2,41	2,43	2,45	2,48	2,50 2,52		2,55	2,43
9	$\mathrm{P}_{\mathrm{max}}$	4775	5200	3673	2098	4775 5200 3673 2098 1744 1818		2,57	2,67	2,70	2,72 2,75	2,75	2,77	2,80	2,77 2,80 2,82 2,84 2,87 2,89	2,84	2,87	2,89	2,92	2,94	2,96	2,85
70	P _{max}	4787	5200	3686	2076	4787 5200 3686 2076 1944 1833		3,01	3,11	3,14	3,01 3,11 3,14 3,16 3,19 3,21 3,24 3,26 3,29 3,31 3,34 3,36 3,38 3,41	3,19	3,21	3,24	3,26	3,29	3,31	3,34	3,36	3,38		3,29

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.27

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=15~{\rm MM}$

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

- в режимах наибольшей нагрузки и низшей температуры

Максимальное (нормативное) тяжение проводника:

Район по гололеду Район по ветру

Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке

 $T_{\text{сг_доп}} = 5200 \text{ H}; \ \sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 108,3 \ \text{H/мм}^2$ $T_{p_{\rm HOH}} = 5200~H;~\sigma_{p_{\rm HOH}} = T_{p_{\rm HOH}}/S = 108,3~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$ $\gamma_{pr}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					Č	Стрелы провеса, м, при температуре,	ирог	seca, 1	4, при	темп	ерату	pe, ^o C	7)			
W	Режим	BΓ	В	В5Г	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0 +5		+10 +15	+15	+20	+25	+30	+35	+40	-5Γ
20	t_{\min}	5200	4816	4524	5200 4816 4524 5145 2603 1520	2603	1520	0,10	0,14	0,15	0,16	0,10 0,14 0,15 0,16 0,18 0,20 0,21	0,20		0,23 0,25 0,27 0,28	0,25	0,27	0,28	0,30 0,32	0,32	0,34	0,29
25	t_{\min}	5200	4744	4395	5200 4744 4395 3815 2186 1534	2186		0,21	0,28	0,30	0,32 0,34	0,34	0,36 0,39		0,41 0,43	0,43	0,44	0,46	0,48	0,50	0,52	0,47
30	$\mathbf{P}_{ ext{max}}$	5200	4694	4308	5200 4694 4308 2867 1968 1543	1968		0,40	0,49	0,52	0,54	0,40 0,49 0,52 0,54 0,56 0,58 0,60	0,58		0,63 0,65	0,65	0,67 0,69	69,0	0,71 0,72		0,74	69,0
35	$\mathbf{P}_{\mathrm{max}}$	5200	4659	4247	5200 4659 4247 2370 1847 1548	1847	1548	99,0	0,76	0,78	0,80	0,66 0,76 0,78 0,80 0,82 0,85 0,87	0,85	0,87	0,89 0,91 0,93 0,95	0,91	0,93	0,95	66'0 26'0	0,99	1,01	0,95
40	\mathbf{P}_{\max}	5200	4634	4205	5200 4634 4205 2112 1774 1552	1774		0,97	1,06 1,08		1,11	1,11 1,13 1,15 1,17	1,15	1,17	1,19 1,21 1,23 1,25	1,21	1,23	1,25	1,27	1,29	1,31	1,25
45	\mathbf{P}_{max}	5200	4615	4175	5200 4615 4175 1964 1726 1555	1726	1555	1,31	1,41	1,43	1,45	1,31 1,41 1,43 1,45 1,47 1,50 1,52 1,54 1,56 1,58 1,60 1,62 1,64	1,50	1,52	1,54	1,56	1,58	1,60	1,62	1,64	1,66	1,60
50	\mathbf{P}_{max}	5200	4601	4152	5200 4601 4152 1871 1693 1557	1693		1,70	1,79	1,82	1,84	1,70 1,79 1,82 1,84 1,86 1,88 1,90 1,92 1,95 1,97 1,99	1,88	1,90	1,92	1,95	1,97	1,99	2,01	2,01 2,03	2,05	1,98
55	\mathbf{P}_{\max}	5200	4574	4148	5200 4574 4148 1816 1676 1563	1676		2,12	2,21	2,24	2,26	2,12 2,21 2,24 2,26 2,28 2,30 2,32	2,30	2,32	2,34	2,36 2,39 2,41	2,39	2,41	2,43	2,45	2,47	2,40
09	\mathbf{P}_{max}	5200	4548	4148	5200 4548 4148 1778 1664 1570	1664		2,58	2,67	2,69	2,71	2,58 2,67 2,69 2,71 2,74 2,76 2,78 2,80 2,82 2,84 2,86 2,88 2,90	2,76	2,78	2,80	2,82	2,84	2,86	2,88	2,90	2,92	2,86
9	\mathbf{P}_{max}	5200	4524	4151	5200 4524 4151 1751 1656 1575	1656		3,08	3,17	3,19	3,21	3,17 3,19 3,21 3,23 3,25 3,27 3,29 3,32 3,34 3,36 3,38 3,40	3,25	3,27	3,29	3,32	3,34	3,36	3,38	3,40	3,42	3,35
70	$\mathbf{P}_{\mathrm{max}}$	5200	4500	4155	5200 4500 4155 1731 1651 1581	1651		3,61	3,70	3,72	3,74	3,61 3,70 3,72 3,74 3,76 3,78 3,80 3,83 3,85 3,87 3,89 3,91 3,93	3,78	3,80	3,83	3,85	3,87	3,89	3,91	3,93	3,95	3,89

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.28

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{сг_доп}} = 5200 \text{ H}; \ \sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 108,3 \ \text{H/мм}^2$ $T_{p_{\rm H}0\rm H} = 5200~H;~\sigma_{p_{\rm H}0\rm H} = T_{p_{\rm H}0\rm H}/S = 108,3~H/{\rm MM}^2$

 $\gamma_{\text{PB}}=1,0$

1		Тяже	ние п	DOROIL	Тяжение проволника. Н	H					۲	гредк	т пров	Leca.	f. IIDIA	CTREUK IIDOBECZ M. IIDU TEMILEDZIYDE.	enarv	Do ou				
Пролет, м	Речени		α	77	tmin,	ter,	t _{max} ,	40	000	7	10			+	+10	+15 +20	+20	l V	130	+25	1	77
	1 CANIM		П	-01	-40	0	+40		07-	-13	-10	ر- ا		ر ر	10	C1		C7	00.	CC	7	-01
20	t_{\min}	5200	3740	4622	5200 3740 4622 2818 1593	1593	1150	0,18 0,25	0,25	0,27 0,29		0,30 0,32	0,32	0,34	0,35	0,37	0,38	0,40	0,41	0,43	0,44	0,43
25	tmin	5200	3589	4558	5200 3589 4558 1868 1392 1145	1392		0,43 0,50 0,52 0,54 0,56 0,57 0,59 0,61	0,50	0,52	0,54	0,56	0,57	0,59	0,61	0,62	0,64	0,65 0,67		99,0	0,70	0,68
30	Pmax	5200	3501	4518	5200 3501 4518 1545 1301 1142	1301		0,74 0,81		0,83	0,85 0,87		0,88	06,0	0,91	0,93	0,94	96,0	86,0	66,0	1,00	0,99
35	P _{max}	5200	3446	4492	5200 3446 4492 1403 1252 1140	1252		1,11 1,18 1,20 1,21 1,23 1,25 1,26 1,28 1,29 1,31 1,32 1,34	1,18	1,20	1,21	1,23	1,25	1,26	1,28	1,29	1,31	1,32	1,34	1,35	1,37	1,35
40	$\mathbf{P}_{ ext{max}}$	5200	3410	4474	5200 3410 4474 1326 1223 1139	1223		1,54 1,60 1,62 1,64 1,65 1,67 1,68 1,70 1,72 1,73 1,75 1,76	1,60	1,62	1,64	1,65	1,67	1,68	1,70	1,72	1,73	1,75	1,76	1,78	1,79	1,77
45	Pmax	5200	3385	4461	5200 3385 4461 1280 1203	1203	1139	2,02	2,08	2,10	2,11	2,13	2,15	2,16	2,18	2,19	2,21	2,22	2,24	2,25	2,27	2,25
50	P _{max}	5200	3367	4452	5200 3367 4452 1249 1190 1138	1190		2,55 2,62 2,63 2,65 2,66 2,68 2,69 2,71 2,73	2,62	2,63	2,65	2,66	2,68	2,69	2,71	2,73	2,74	2,76 2,77	2,77	2,79	2,80	2,78
55	P_{max}	5200	3337	4455	5200 3337 4455 1230 1183 1140	1183		3,13 3,20 3,21 3,23 3,25 3,26 3,28 3,29 3,31 3,32	3,20	3,21	3,23	3,25	3,26	3,28	3,29	3,31	3,32	3,34 3,35 3,37	3,35	3,37	3,38	3,36
09	$\mathbf{P}_{\mathrm{max}}$	5200	3311	4460	5200 3311 4460 1217 1178 1143	1178		3,77	3,83	3,85	3,86 3,88	3,88	3,90	3,91 3,93		3,94	3,96	3,97 3,99		4,00	4,02	4,00
9	$\mathbf{P}_{\mathrm{max}}$	5200	3287	4466	5200 3287 4466 1208 1175 1145	1175		4,46 4,52 4,54 4,55 4,57 4,58 4,60 4,61 4,63 4,64 4,66 4,67	4,52	4,54	4,55	4,57	4,58	4,60	4,61	4,63	4,64	4,66	4,67	4,69	4,70	4,68
70	P _{max}	5200	3264	4473	5200 3264 4473 1202 1174 1147	1174		5,20 5,26 5,28 5,29 5,31 5,32 5,34 5,35 5,37 5,38 5,40 5,41	5,26	5,28	5,29	5,31	5,32	5,34	5,35	5,37	5,38	5,40	5,41	5,43	5,44	5,42

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.29

Монтажные таблицы универсального кабеля FXCEL 3x16/10-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{3}}\!=25~\mathrm{MM}$

 $T_{\text{сг_доп}} = 5200 \text{ H}; \ \sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 108,3 \ \text{H/мм}^2$ $T_{p_{\rm HOH}} = 5200~H;~\sigma_{p_{\rm HOH}} = T_{p_{\rm HOH}}/S = 108,3~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	Стрелы провеса, м, при температуре,	пров	eca, M	г, при	темп	ерату	pe, °C	<i>T</i> \			
¥	Режим	BΓ	В	-5T	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0 +5		+10 +15	+15	+20	+25	+30	+35	+40	-5Γ
20	tmin	5200	3006	5200 3006 4668 1590	1590	1149	934	0,32	0,39	0,40	0,32 0,39 0,40 0,42 0,43 0,44 0,46	0,43	0,44		0,47 0,48		0,50 0,51	0,51	0,52	0,53	0,55	0,54
25	tmin	5200	2877	4627	5200 2877 4627 1236 1050		927	0,64	0,70	0,72	0,64 0,70 0,72 0,73 0,75 0,76 0,77 0,78 0,80	0,75	0,76	0,77	0,78	0,80	0,81 0,82	0,82	0,84	0,85	0,86	0,85
30	P _{max}	5200	2807	2807 4603	1109	1004	924	1,03	1,09	1,10	1,12	1,13	1,14 1,16	1,16	1,17 1,18	1,18	1,19 1,21	1,21	1,22	1,23	1,24	1,24
35	P _{max}	5200	2766	5200 2766 4587 1048	1048	626	922	1,49	1,54	1,56	1,49 1,54 1,56 1,57 1,58 1,60 1,61 1,62 1,63 1,65 1,66 1,67	1,58	1,60	1,61	1,62	1,63	1,65	1,66	1,67	1,68	1,69	1,69
40	$\mathbf{P}_{\mathrm{max}}$	5200	2739	5200 2739 4577 1012	1012	696	920	2,02	2,07	2,08	2,02 2,07 2,08 2,09 2,11 2,12 2,13	2,11	2,12	2,13	2,14 2,16 2,17 2,18	2,16	2,17	2,18	2,19 2,20	2,20	2,22	2,21
45	P _{max}	5200	5200 2721 4569		066	953	919	2,61	2,66	2,67	2,68 2,70		2,71 2,72	2,72	2,73	2,75	2,76	2,77	2,78	2,80	2,81	2,80
50	P_{max}	5200	5200 2708 4564	4564	974	945	919	3,27	3,32	3,33	3,27 3,32 3,33 3,35 3,36 3,37 3,38 3,40 3,41 3,42 3,43 3,45 3,46	3,36	3,37	3,38	3,40	3,41	3,42	3,43	3,45	3,46	3,47	3,46
55	P_{max}	5200	5200 2684 4569		996	942	920	3,99	4,04	4,06	3,99 4,04 4,06 4,07 4,08 4,09 4,11 4,12 4,13 4,14 4,16 4,17 4,18	4,08	4,09	4,11	4,12	4,13	4,14	4,16	4,17	4,18	4,19	4,19
09	P_{max}	5200	5200 2662 4575		096	940	921	4,78	4,83	4,85	4,86	4,87 4,88	4,88	4,90	4,91 4,92	4,92	4,93	4,94	4,96	4,97	4,98	4,97
9	P_{max}	5200	5200 2642 4581		955	939	923	5,64	5,69	5,70	5,64 5,69 5,70 5,71 5,73 5,74 5,75 5,76 5,78 5,79 5,80	5,73	5,74	5,75	5,76	5,78	5,79	5,80	5,81 5,82	5,82	5,84	5,83
70	P_{max}	5200	5200 2624 4588	4588	952	938	924	95'9	6,61	6,62	6,56 6,61 6,62 6,63 6,65 6,66 6,67 6,68 6,70	6,65	99,9	29,9	89,9	6,70	6,71 6,72	6,72	6,73 6,75	6,75	6,76	6,75

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.30

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

 $T_{\text{cl_don}} = 5200~\text{H;}~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 24,8~\text{H/mm}^2$ $T_{p_{\rm don}} = 5200~H;~\sigma_{p_{\rm don}} = T_{p_{\rm don}}/S = 24,8~H/{\rm MM}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	грель	прое	eca, n	1, при	Стрелы провеса, м, при температуре, оС	epary	pe, °C	* \			
W	Режим	Bľ	В	-5Г	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	5-	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Γ
20	tmin	4596	5200	3727	4596 5200 3727 5014 2067 1449	2067		0,15	0,26	0,28	0,31	0,33 0,36 0,38 0,40	0,36	0,38	0,40	0,42 0,44		0,46 0,47		0,49	0,51	0,36
25	t _{min}	4560	5200	3651	4560 5200 3651 3201 2019 1576	2019		0,36	0,47	0,50	0,52	0,55	0,57	0,59	0,61	$0,50 \mid 0,52 \mid 0,55 \mid 0,57 \mid 0,59 \mid 0,61 \mid 0,63 \mid 0,65 \mid 0,67 \mid 0,69 \mid 0,71$	3,65	0,67	69,0	0,71	0,73	0,57
30	Pmax	4539	5200	3609	4539 5200 3609 2634 1994 1662	1994		0,63	0,74	0,76	0,78	0,81	0,83	0,85	0,87	0,90 0,92		0,94	96,0	86,0	1,00	0,83
35	Pmax	4526	5200	3582	4526 5200 3582 2390 1978 1722	1978		0,94 1,04	1,04	1,07	1,09	1,12	1,14	1,16	1,18	1,12 1,14 1,16 1,18 1,20 1,23 1,25 1,27 1,29 1,31	1,23	1,25	1,27	1,29	i	1,14
40	Pmax	4517	5200	3565	4517 5200 3565 2260 1968 1765	1968	_	1,30 1,40	1,40	1,43	1,45	1,47	1,49	1,52	1,54	1,43 1,45 1,47 1,49 1,52 1,54 1,56 1,58 1,60 1,63	1,58	1,60	1,63	1,65	1,67	1,50
45	Pmax	4511	5200	3553	4511 5200 3553 2180 1961 1797	1961		1,71	1,81	1,83	1,85	1,88	1,90	1,92	1,94	1,97 1,99	1,99	2,01	2,03	2,05	2,07	1,90
50	$\mathbf{P}_{ ext{max}}$	4507	5200	3545	4507 5200 3545 2127 1957 1821	1957		2,16 2,26 2,28 2,38 2,30 2,33 2,35 2,37 2,39 2,42 2,44 2,46 2,48 2,50 2,52	2,26	2,28	2,30	2,33	2,35	2,37	2,39	2,42	2,44	2,46	2,48	2,50		2,35
55	$\mathbf{P}_{ ext{max}}$	4521	5200	3564	4521 5200 3564 2108 1967 1851	1967		2,64	2,73	2,76 2,78	2,78	2,80	2,83	2,85	2,87	2,90 2,92 2,94	2,92	2,94	2,96	2,98	3,00	2,83
09	$\mathbf{P}_{\mathrm{max}}$	4537	5200	3585	4537 5200 3585 2097 1979 1878	1979		3,16 3,25	3,25	3,28	3,30	3,32	3,35 3,37	3,37	3,39	3,41 3,44 3,46	3,44	3,46	3,48	3,50	3,52	3,35
9	$\mathbf{P}_{ ext{max}}$	4553	5200	3608	4553 5200 3608 2093 1991 1903	1991		3,71 3,81 3,83 3,86 3,88 3,90 3,92 3,95 3,97 3,99 4,02 4,04 4,06 4,08	3,81	3,83	3,86	3,88	3,90	3,92	3,95	3,97	3,99	4,02	4,04	4,06		3,90
70	$\mathbf{P}_{ ext{max}}$	4570	5200	3631	4570 5200 3631 2093 2004 1926	2004	1926	4,31	4,40	4,43 4,45	4,45	4,47	4,50	4,52	4,54	4,47 4,50 4,52 4,54 4,57 4,59 4,61	4,59	4,61	4,63	4,66	4,68	4,50

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.31

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 9}}\!=15~{\rm MM}$

 $T_{\text{cl_don}} = 5200~\text{H;}~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 24,8~\text{H/mm}^2$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 24,8~H/m M^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника,	Н					O	трель	ирон	seca, n	1, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C				
W	Режим	Bľ	В	-5T	t _{min} ,	ter,	t _{max} ,	-40	-20	-15	-10	٠-	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Γ
20	tmin	5200	4899	4348	5200 4899 4348 4073 1921 1393	1921		0,18	0,29	0,32	0,34	0,36	0,38	0,40	0,42	$0,36 \ \left \ 0,38 \ \right 0,40 \ \left \ 0,42 \ \right 0,44 \ \left \ 0,46 \ \right 0,48 \ \left \ 0,50 \ \right 0,51$	0,46	0,48	0,50		0,53	0,40
25	t _{min}	5200	4883	4305	5200 4883 4305 2756 1879 1505	1879		0,42	0,52	0,55	0,57	0,59	0,61	0,63	0,65	0,55 0,57 0,59 0,61 0,63 0,65 0,67 0,69 0,71 0,73 0,75	69,0	0,71	0,73	0,75	0,76	0,62
30	Pmax	5200	4873	4280	5200 4873 4280 2348 1856 1579	1856		0,70	0,80	0,83	0,85	0,87 0,89	68,0	0,91	0,93	0,95 0,97		66,0	1,01	1,03	1,05	0,90
35	Pmax	5200	4867	4265	5200 4867 4265 2165 1843 1630	1843		1,04	1,13	1,16	1,18	1,230	1,22	1,24	1,26	1,16 1,18 1,230 1,22 1,24 1,26 1,28 1,30 1,32 1,34 1,36 1,38	1,30	1,32	1,34	1,36		1,23
40	$\mathbf{P}_{ ext{max}}$	5200	4863	4255	5200 4863 4255 2064 1834 1666	1834		1,43 1,52 1,54 1,56 1,58 1,60 1,63 1,65 1,67 1,69 1,71 1,73 1,75 1,75 1,77	1,52	1,54	1,56	1,58	1,60	1,63	1,65	1,67	1,69	1,71	1,73	1,75		1,62
45	$\mathbf{P}_{ ext{max}}$	5200	4861	4248	5200 4861 4248 2001 1828 1692	1828		1,86	1,95	1,97	1,99	2,02	2,04	2,06	2,08	2,10 2,12	2,12	2,14	2,16	2,18	2,20	2,05
50	$\mathbf{P}_{ ext{max}}$	5200	4859	4243	5200 4859 4243 1960 1824 1712	1824		2,35 2,43 2,46 2,48 2,50 2,52 2,54 2,56 2,58 2,60 2,62 2,64 2,67	2,43	2,46	2,48	2,50	2,52	2,54	2,56	2,58	2,60	2,62	2,64	2,67	2,69	2,53
55	$\mathbf{P}_{\mathrm{max}}$	5200	4836	4251	5200 4836 4251 1937 1826 1732	1826	_	2,87 2,96	2,96	2,98 3,00	3,00	3,03	3,05	3,07	3,09	$3,03 \ \ 3,05 \ \ 3,07 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3,13	3,15	3,17	3,19		3,06
09	$\mathbf{P}_{ ext{max}}$	5200	4814	4260	5200 4814 4260 1921 1828 1748	1828		3,45	3,53	3,56 3,58	3,58	3,60	3,62	3,64	3,66	3,68 3,70	3,70	3,73	3,75	3,77	3,79	3,63
65	$\mathbf{P}_{ ext{max}}$	5200	4792	4270	5200 4792 4270 1910 1832 1762	1832		4,07 4,15 4,18 4,20 4,22 4,24 4,26 4,28 4,30 4,33 4,35 4,37 4,39	4,15	4,18	4,20	4,22	4,24	4,26	4,28	4,30	4,33	4,35	4,37	4,39	4,41	4,25
70	P _{max}	5200	4770	4280	5200 4770 4280 1903 1835 1775	1835		4,73	4,82	4,84	4,87	4,89	4,91	4,93	4,95	4,84 4,87 4,89 4,91 4,93 4,95 4,97 4,99 5,01	4,99	5,01	5,04	5,04 5,06	5,08	4,92

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-35 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.32

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{cl_don}} = 5200~\text{H};~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 24,8~\text{H/mm}^2$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 24,8~H/m M^2$

Тяжение проводника, Н	Тяжение пр	ние п		ровод	ника,	Н					O	трель	Стрелы провеса, м, при температуре, ^о С	seca, n	1, при	Темп	ерату	pe, oc	7)			
Режим $B\Gamma$ B -5 Γ $\frac{t_{min}}{-40}$ $\frac{t_{cr}}{0}$ $\frac{t_{max}}{+40}$ -2	BI B -5I tmin, tcr, tmax,	-5T tmin, tcr, tmax,	tmin, tcr, tmax, -40 0 +40	tcr, t _{max} , 0 +40	t _{max} , +40		1	-40	-20	-15	-10	5-	0	+	+10	+10 +15 +20		+25	+30	+35	+40	-5T
t _{min} 5200 3688 4578 1922 1394 1143 0	1922 1394 1143	1922 1394 1143	1922 1394 1143	1922 1394 1143	1143			0,38	0,46	0,48	0,50	0,51	0,53 0,54 0,56 0,57 0,59	0,54	0,56	0,57	0,59	0,60	0,62	0,63	0,64	0,54
t _{min} 5200 3651 4560 1640 1372 1202	5200 3651 4560 1640 1372 1202	3651 4560 1640 1372 1202	4560 1640 1372 1202	1640 1372 1202	1372 1202	1202	_	0,70	0,77	0,79	$0,70 \mid 0,77 \mid 0,79 \mid 0,81 \mid 0,82 \mid 0,84 \mid 0,85 \mid 0,87 \mid 0,88 \mid 0,90$	0,82	0,84	0,85	0,87	0,88		0,91 0,93		0,94	96,0	0,85
P _{max} 5200 3631 4550 1527 1360 1238		3631 4550 1527 1360 1238	4550 1527 1360 1238	1527 1360 1238	1360 1238	1238		1,08	1,15	1,17	1,18	1,20	1,22	1,23	1,25	1,26	1,28	1,29	1,31	1,32	1,34	1,23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5200 3619 4544 1469 1353 1261	3619 4544 1469 1353 1261	4544 1469 1353 1261	1469 1353 1261	1353 1261	1261		1,53	1,60 1,62	1,62	1,63 1,65 1,66 1,68 1,70 1,71 1,73 1,74 1,76 1,77 1,79	1,65	1,66	1,68	1,70	1,71	1,73	1,74	1,76	1,77		1,68
P _{max} 5200 3611 4540 1434 1349 1277		3611 4540 1434 1349 1277	4540 1434 1349 1277	1434 1349 1277	1349 1277	1277	_	2,05	2,12	2,13	2,13 2,15 2,17	2,17	2,18 2,20 2,21 2,23 2,24 2,26 2,27 2,29 2,30	2,20	2,21	2,23	2,24	2,26	2,27	2,29		2,20
P _{max} 5200 3605 4537 1411 1346 1288	5200 3605 4537 1411 1346 1288	3605 4537 1411 1346 1288	4537 1411 1346 1288	1411 1346 1288	1346 1288	1288		2,64	2,70	2,72	2,74	2,75	2,77	2,78	2,80	2,81	2,83	2,84	2,86	2,87	2,89	2,78
P _{max} 5200 3601 4535 1396 1344 1297		3601 4535 1396 1344 1297	4535 1396 1344 1297	1396 1344 1297	1344 1297	1297		3,29	3,36	3,37	3,29 3,36 3,37 3,39 3,41 3,42 3,44 3,45 3,47 3,48 3,50 3,51 3,53 3,54	3,41	3,42	3,44	3,45	3,47	3,48	3,50	3,51	3,53		3,44
P _{max} 5200 3580 4542 1388 1345 1306	5200 3580 4542 1388 1345 130	3580 4542 1388 1345 130	4542 1388 1345 130	1388 1345 130	1345 130	130	_	4,01	4,07	4,09	4,10 4,12	4,12	4,14 4,15 4,17	4,15	4,17	4,18	4,20	4,20 4,21 4,23		4,24	4,26	4,15
P _{max} 5200 3559 4550 1382 1346 1313	5200 3559 4550 1382 1346 131	3559 4550 1382 1346 131	4550 1382 1346 131	1382 1346 131	1346 131	131		4,79	4,85	4,87	4,89	4,90	4,92	4,93	4,95	4,96	4,98	5,00	5,01	5,03	5,04	4,93
P _{max} 5200 3559 4558 1378 1348 1319		3559 4558 1378 1348 131	4558 1378 1348 131	1378 1348 131	1348 131	131		5,64	5,70	5,72	5,72 5,73 5,75 5,76 5,78 5,79 5,81 5,83 5,84 5,86 5,87 5,89	5,75	5,76	5,78	5,79	5,81	5,83	5,84	5,86	5,87		5,78
P _{max} 5200 3519 4567 1376 1350 1325		3519 4567 1376 1350 133	4567 1376 1350 133	1376 1350 132	1350 132	132		6,55	6,61	6,63 6,64	6,64	99,9	6,66 6,67 6,69 6,71 6,72 6,74 6,75 6,77 6,78	69,9	6,71	6,72	6,74	6,75	6,77	6,78	6,80	69,9

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.33

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х70/16-10

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

- в режиме среднегодовой температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке

W₀ = 400-800 Па, I-IV район $b_{_{3}}\!=25~\mathrm{MM}$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 24,8~H/m M^2$

 $T_{\text{cl_don}} = 5200~\text{H;}~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 24,8~\text{H/mm}^2$

Пролет,		Тяже	ние п	ровод	Гяжение проводника,	Н					C	грель	прое	seca, n	г, при	Стрелы провеса, м, при температуре, ^о С	ерату	pe, ^o C	7 \			
W	Режим	Bľ	В	-5Г	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	5-	0	+5	+10	+15 +20	+20	+25	+30	+35	+40	-5Γ
20	tmin	5200	3022	4665	5200 3022 4665 1370 1130		883	0,54	09,0	0,61	0,62	0,64	0,65	0,65 0,66 0,68	0,68	0,69 0,70 0,71 0,73 0,74	0,70	0,71	0,73	0,74	0,75	0,67
25	t _{min}	5200	2992	4654	5200 2992 4654 1250 1117 1019	1117		0,92	86,0	0,99 1,00		1,02	1,03	1,04	1,05	1,02 1,03 1,04 1,05 1,07 1,08	1,08	1,09	$1,10 \mid 1,12$	1,12	1,13	1,05
30	Pmax	5200	2976	4648	5200 2976 4648 1196 1110 1040	1110		1,38	1,44	1,45	1,46	1,48	1,49	1,50	1,52	1,53	1,54	1,55	1,57	1,58	1,59	1,51
35	Pmax	5200	2966	4644	5200 2966 4644 1166 1106 1054	1106		1,93 1,98	1,98	2,00 2,01	2,01	2,02	2,04	2,04 2,05 2,06	2,06	2,08 2,09 2,10 2,11 2,13	2,09	2,10	2,11		2,14	2,05
40	Pmax	5200	2960	4642	5200 2960 4642 1148 1103 1063	1103		2,56 2,62	2,62	2,63 2,64	2,64	2,65	2,67	2,68	69,7	2,65 2,67 2,68 2,69 2,71 2,72 2,73 2,74 2,76 2,77	2,72	2,73	2,74	2,76		2,68
45	Pmax	5200	2960	4640	5200 2960 4640 1136 1101 1069	1101		3,28	3,33	3,34	3,36	3,37	3,38	3,39	3,41	3,42	3,43	3,45	3,46	3,47	3,48	3,40
50	$\mathbf{P}_{ ext{max}}$	5200	2956	4639	5200 2956 4639 1128 1100 1074	1100		4,08	4,13	4,14	4,13 4,14 4,15 4,17 4,18 4,19 4,21 4,22 4,23 4,24 4,26 4,27 4,28	4,17	4,18	4,19	4,21	4,22	4,23	4,24	4,26	4,27	4,28	4,20
55	\mathbf{P}_{\max}	5200	2953	4646	5200 2953 4646 1124 1101 1079	1101	_	4,95	5,00	5,01	5,03	5,04	5,05	5,05 5,07 5,08	5,08	5,09 5,10 5,12	5,10	5,12	5,13	5,14	5,15	5,07
09	$\mathbf{P}_{ ext{max}}$	5200	2934	4653	5200 2934 4653 1121 1102 1084	1102		2,90	5,96	5,97	5,98	5,99	6,01	6,05	6,03	6,05 6,06 6,07	90,9		80,9	6,10	6,11	6,02
65	$\mathbf{P}_{ ext{max}}$	5200	2916	4661	5200 2916 4661 1120 1103 1087	1103		6,94	66,9	7,00 7,02	7,02	7,03	7,04	7,05	7,07	7,03 7,04 7,05 7,07 7,08 7,09 7,11 7,12 7,13	7,09	7,11	7,12		7,14	7,06
70	P _{max}	5200	2899	4668	5200 2899 4668 1119 1105 1091	1105		8,05	8,10	8,12	8,13	8,14	8,16 8,17	8,17	8,18	8,19 8,21 8,22	8,21	8,22	8,23	8,23 8,25	8,26	8,17

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.34

W₀ = 400-800 Па, I-IV район

 $b_{_{\rm 3}}\!=10~{\rm MM}$

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х95/25-20

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

 $T_{\text{Cl_Hom}} = 5200 \; \text{H;} \; \sigma_{\text{cl_Hom}} = T_{\text{cl_Hom}} / \text{S} = 18.2 \; \text{H/mm}^2$ $T_{p_{\rm don}} = 5200~H;~\sigma_{p_{\rm don}} = T_{p_{\rm don}}/S = 18,2~H/{\rm MM}^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	Стрелы провеса, м, при температуре,	пров	seca, n	1, при	темп	ерату	pe, ^o C	<i>T</i> \			
W	Режим	BΓ	В	-5T	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	٠-	0	+5	+10 +15		+20	+25	+30	+35	+40	-5T
20	t_{\min}	4609	5200	3870	3665	4609 5200 3870 3665 2336 1832		0,29	0,38	0,41 0,42	0,42	0,44 0,46 0,48	0,46	0,48	0,50	0,50 0,51 0,53 0,54	0,53	0,54	0,56	0,57	0,59	0,46
25	t_{\min}	4590	5200	3834	2979	4590 5200 3834 2979 2322 1963		0,57 0,65	0,65	0,67	0,67 0,69 0,71 0,73 0,74 0,76 0,78 0,79 0,81	0,71	0,73	0,74	0,76	0,78	0,79		0,83 0,84	0,84	0,86	0,72
30	$\mathbf{P}_{\mathrm{max}}$	4580	5200	3414	2719	4580 5200 3414 2719 2314 2048		68,0	76,0	0,99	1,01	1,03	1,05 1,07		1,08	1,10	1,12	1,14	1,15	1,17	1,19	1,04
35	P _{max}	4574	5200	3802	2587	4574 5200 3802 2587 2310 2105		1,28	1,36	1,37	1,37 1,39 1,41 1,43 1,45 1,47 1,48 1,50 1,52 1,54 1,55	1,41	1,43	1,45	1,47	1,48	1,50	1,52	1,54	1,55	1,57	1,43
40	$\mathbf{P}_{\mathrm{max}}$	4569	5200	3794	2510	4569 5200 3794 2510 2307 2145		1,72 1,80	1,80	1,82	1,82 1,83 1,85 1,87 1,89 1,91 1,92 1,94 1,96 1,98	1,85	1,87	1,89	1,91	1,92	1,94	1,96	1,98	1,99	2,01	1,87
45	$\mathbf{P}_{\mathrm{max}}$	4566	4566 5200 3789 2461	3789	2461	2305 2174		2,22	2,30	2,31	2,33	2,35	2,37	2,39	2,41 2,42	2,42	2,44	2,46	2,48	2,49	2,51	2,36
50	$\mathbf{P}_{\mathrm{max}}$	4564	5200	3785	2427	4564 5200 3785 2427 2303 2196		2,78	2,85	2,87	2,85 2,87 2,89 2,91 2,93 2,95 2,96 2,98 3,00 3,02	2,91	2,93	2,95	2,96	2,98	3,00	3,02	3,04	3,05	3,07	2,92
55	$\mathbf{P}_{\mathrm{max}}$	4581	5200	3807	2421	4581 5200 3807 2421 2317 2226		3,37	3,45	3,46	3,45 3,46 3,48 3,50 3,52 3,54 3,56 3,58 3,59 3,61 3,63	3,50	3,52	3,54	3,56	3,58	3,59	3,61	3,63	3,65	3,66	3,52
09	$\mathbf{P}_{\mathrm{max}}$	4599	5200	3831	2420	4599 5200 3831 2420 2332 2253		4,01	4,09	4,11	4,13 4,14	4,14	4,16 4,18 4,20 4,22	4,18	4,20		4,24 4,25	4,25	4,27	4,29	4,31	4,16
65	$\mathbf{P}_{\mathrm{max}}$	4617	5200	3855	2423	4617 5200 3855 2423 2348 2278	_	4,70	4,78	4,80	4,78 4,80 4,82 4,83 4,85 4,87 4,89 4,91 4,93 4,95 4,96 4,98	4,83	4,85	4,87	4,89	4,91	4,93	4,95	4,96		5,00	4,85
70	P _{max}	4636	5200	3880	2429	4636 5200 3880 2429 2363 2302		5,44	5,52	5,54	5,52 5,54 5,55 5,57 5,59 5,61 5,63 5,65 5,67 5,69 5,70 5,72	5,57	5,59	5,61	5,63	5,65	5,67	5,69	5,70	5,72	5,74	5,59

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ с ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.35

W₀ = 400-800 Па, I-IV район

Монтажные таблицы универсального кабеля АХСЕЅ™ 3х95/25-20

 $b_{_{\rm 9}}\!=15~{\rm MM}$

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

 $T_{\text{Cl_Hom}} = 5200 \; \text{H;} \; \sigma_{\text{cl_Hom}} = T_{\text{cl_Hom}} / \text{S} = 18.2 \; \text{H/mm}^2$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 18,2~H/mM^2$ $\gamma_{\text{PB}}=1,0$

Пролет,		Тяже	ние п	ровод	Гяжение проводника, Н	Н					C	Стрелы провеса, м, при температуре,	прон	seca, n	4, при	темп	ерату	pe, ^o C	<i>T</i> >			
W	Режим	Bľ	В	-5T	t _{min} , -40	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5□
20	t_{\min}	5200	4913	4467	3226	5200 4913 4467 3226 2198 1761		0,33 0,42		0,44	0,44 0,46 0,47 0,49 0,51 0,52 0,54 0,55 0,57 0,58	0,47	0,49	0,51	0,52	0,54	0,55	0,57	0,58	0,60	0,61	0,49
25	t_{\min}	5200	4905	4447	2709	5200 4905 4447 2709 2184 1876		0,62	0,70	0,72	0,74	0,75	0,77	0,79	0,81	0,82	0,84	0,85	0,87	0,88	0,90	0,77
30	$\mathbf{P}_{\mathrm{max}}$	5200	4900	4436	2504	5200 4900 4436 2504 2176 1950		0,97 1,04		1,06 1,08		1,10 1,12	1,12	1,13	1,15	1,13 1,15 1,17 1,18	1,18	1,20 1,21	1,21	1,23	1,24	1,12
35	$\mathbf{P}_{\mathrm{max}}$	5200	4897	4429	2398	5200 4897 4429 2398 2172 1999		1,38 1,45		1,47	1,47 1,49 1,50 1,52 1,54 1,56 1,57 1,59 1,60 1,62	1,50	1,52	1,54	1,56	1,57	1,59	1,60	1,62	1,64	1,65	1,52
40	\mathbf{P}_{\max}	5200	4895	4425	2336	5200 4895 4425 2336 2169 2033		1,85	1,92	1,94	1,95	1,97 1,99		2,01	2,02	2,04	2,06	2,07	2,09	2,11	2,12	1,99
45	$\mathbf{P}_{ ext{max}}$	5200	4894	4422	2296	5200 4894 4422 2296 2167 2057		2,38 2,45 2,47 2,49 2,50 2,52 2,54 2,55 2,57 2,57 2,59 2,60 2,62	2,45	2,47	2,49	2,50	2,52	2,54	2,55	2,57	2,59	2,60	2,62	2,64	2,65	2,52
50	\mathbf{P}_{max}	5200	4893	4420	2268	5200 4893 4420 2268 2165 2075		2,97 3,04		3,06 3,08		3,10 3,11	3,11	3,13	3,15	3,13 3,15 3,16 3,18 3,20 3,22	3,18	3,20	3,22	3,23	3,25	3,12
55	\mathbf{P}_{\max}	5200	4871	4428	2254	5200 4871 4428 2254 2169 2094		3,62 3,69		3,71	3,73	3,74	3,76	3,78	3,79	3,81	3,83	3,85	3,86	3,88	3,90	3,76
09	$\mathbf{P}_{\mathrm{max}}$	5200	4849	4437	2244	5200 4849 4437 2244 2174 2109		4,33 4,40		4,41	4,41 4,43 4,45 4,47 4,48 4,50	4,45	4,47	4,48	4,50	4,52 4,54	4,54	4,55 4,57 4,59	4,57		4,60	4,47
65	\mathbf{P}_{max}	5200	4827	4447	2238	5200 4827 4447 2238 2178 2122		5,09 5,16		5,18	5,20	5,21 5,23		5,25 5,27	5,27	5,28	5,30	5,32	5,33	5,35	5,37	5,23
70	Pmax	5200	4805	4456	2234	5200 4805 4456 2234 2182 2134		5,91 5,98 6,00 6,02	5,98	6,00	6,02	6,04	6,05	6,07	60,9	6,11	6,12	6,14 6,16	6,16	6,18	6,19	90,9

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ С ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.36

Монтажные таблицы универсального кабеля АХСЕЅ^{ТМ} 3х95/25-20

Максимальное (нормативное) тяжение проводника: Район по гололеду Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район $b_{_{\rm 3}}\!=20~{\rm MM}$

 $T_{\text{cl_don}} = 5200~\text{H};~\sigma_{\text{cl_don}} = T_{\text{cl_don}}/S = 18,2~\text{H/mm}^2$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 18,2~H/mM^2$

Пролет,		Тяже	ние п	ровод	Тяжение проводника, Н	Н					Č	трель	одп г	seca, 1	м, пре	Стрелы провеса, м, при температуре,	ерату	pe, oC				
W	Режим	BI	В	-5Г	t _{min} ,	ter,	t _{max} , +40	40	-20	-15	-10	<u>٠</u> -	0	+5 +10		+15 +20		+25	+30	+35	+40	-5Г
20	tmin	5200	3748	4666	5200 3748 4666 2007	1657 1442	1442	0,54 0,60	0,60	0,61 0,62		0,64 0,65		0,66 0,68		69,0	0,70	0,71	0,73	0,74	0,75	99,0
25	tmin	5200	3729	4657	5200 3729 4657 1846 1648 1502	1648		0,91 0,97		86,0	1,00 1,01 1,02 1,04 1,05 1,06 1,07 1,09	1,01	1,02	1,04	1,05	1,06	1,07	1,09	1,10	1,11	1,12	1,03
30	Pmax	5200	3718	4652	5200 3718 4652 1773	1643 1538		1,37	1,42	1,44	1,45	1,46	1,48	1,49	1,50	1,52	1,53	1,54	1,55	1,57	1,58	1,48
35	\mathbf{P}_{\max}	5200	3712	4649	5200 3712 4649 1732 1640 1561	1640		1,91 1,96 1,98 1,99 2,00 2,01 2,03	1,96	1,98	1,99	2,00	2,01	2,03	2,04	2,05	2,07	2,08	2,09	2,10	2,12	2,02
40	$\mathbf{P}_{ ext{max}}$	5200	3708	4647	5200 3708 4647 1707 1638 1577	1638		2,53 2,58 2,60 2,61 2,62 2,63 2,65 2,66 2,67 2,69	2,58	2,60	2,61	2,62	2,63	2,65	2,66	2,67	2,69	2,70 2,71	2,71	2,72	2,74	2,64
45	$\mathbf{P}_{ ext{max}}$	5200	3705	4646	5200 3705 4646 1690 1637 1588	1637		3,23	3,28	3,30	3,31	3,32	3,34	3,35	3,36	3,38	3,39	3,40	3,41	3,43	3,44	3,34
50	$\mathbf{P}_{\mathrm{max}}$	5200	3703	4645	5200 3703 4645 1679 1636 1596	1636		4,02 4,07 4,08 4,10 4,11 4,12 4,14 4,15 4,16 4,17 4,19 4,20	4,07	4,08	4,10	4,11	4,12	4,14	4,15	4,16	4,17	4,19	4,20	4,21	4,23	4,13
55	\mathbf{p}_{\max}	5200	3683	4652	5200 3683 4652 1673 1638 1604	1638		4,88 4,93		4,94	4,94 4,96 4,97 4,98 4,99 5,01	4,97	4,98	4,99	5,01	5,02 5,03		5,05 5,06		5,07	5,08	4,99
09	\mathbf{P}_{max}	5200	3663	4659	5200 3663 4659 1670 1640 1612	1640		5,81	5,87	5,88	5,89	5,91	5,92	5,93	5,95	5,96	5,97	5,99	6,00	6,01	6,02	5,93
65	$\mathbf{P}_{\mathrm{max}}$	5200	3644	4667	5200 3644 4667 1668 1642 1618	1642		6,83	68,9	6,90	6,83 6,89 6,90 6,91 6,93 6,94 6,95 6,96 6,98 6,99	6,93	6,94	6,95	96,9	86,9	66,9	7,00 7,02	7,02	7,03	7,04	6,94
70	$\mathbf{P}_{\mathrm{max}}$	5200	3624	4674	5200 3624 4674 1667 1645 1624	1645		7,93 7,98	7,98	8,00 8,01	8,01	8,02	8,03	8,05	8,06	8,02 8,03 8,05 8,06 8,07 8,09	8,09	8,10	8,11	8,13	8,14	8,04

ТАБЛИЦЫ СТРЕЛ ПРОВЕСА И ТЯЖЕНИЙ

ДВУХЦЕПНЫЕ КВЛ 10-20 кВ С ПОДВЕСКОЙ ВЛИ 0,4 кВ

Таблица 3.37

Монтажные таблицы универсального кабеля AXCES 3х95/25-20

Максимальное (нормативное) тяжение проводника: Район по гололеду

Район по ветру

- в режимах наибольшей нагрузки и низшей температуры

Региональный коэффициент при расчетной гололедной нагрузке Региональный коэффициент при расчетной ветровой нагрузке - в режиме среднегодовой температуры

W₀ = 400-800 Па, I-IV район

 $b_{_{3}}\!=25~\mathrm{MM}$

 $T_{\text{сг_доп}} = 5200~\text{H};~\sigma_{\text{сг_доп}} = T_{\text{сг_доп}}/S = 18,2~\text{H/мм}^2$ $T_{p_\pi o \pi} = 5200~H;~\sigma_{p_\pi o \pi} = T_{p_\pi o \pi}/S = 18,2~H/mM^2$

Пролет,		Тяже	ние п	Тяжение проводника, Н	ника,	Н					Č	грель	Стрелы провеса, м, при температуре,	seca, n	1, при	Темп	ерату	70°, od	7)			
M	Режим	BΓ	В	-5T	t _{min} ,	ter,	t _{max} , +40	-40	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	-5Г
20	t_{min}	5200	3124	5200 3124 4738 1562 1377 1245	1562	1377		69,0	0,74	0,75	0,76	0,77	0,78	0,79	0,80	0,82	0,83	0,84	0,85	0,86	0,87	0,79
25	t_{min}	5200	3108	5200 3108 4733 1480 1371 1283	1480	1371		1,14	1,18	1,20	1,18 1,20 1,21 1,22	1,22	1,23 1,24	1,24	1,25	1,25 1,26 1,27 1,28	1,27		1,29 1,30	1,30	1,31	1,24
30	$\mathbf{P}_{ ext{max}}$	5200	3100	5200 3100 4730 1440 1368 1305	1440	1368		1,69	1,73	1,74	1,75	1,76	1,77	1,79	1,80	1,81	1,82	1,83	1,84	1,85	1,86	1,78
35	$\mathbf{P}_{ ext{max}}$	5200	3094	5200 3094 4728 1418 1366 1319	1418	1366	-	2,33	2,37	2,39	2,37 2,39 2,40 2,41	2,41	2,42 2,43	2,43	2,44	2,45	2,46	2,47	2,48	2,49	2,50	2,43
40	$\mathbf{P}_{ ext{max}}$	5200	3091	5200 3091 4727 1404 1364 1328	1404	1364		3,07	3,12	3,13	3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19 3,21 3,22 3,23 3,24 3,25	3,15	3,16	3,17	3,18	3,19	3,21	3,22	3,23	3,24	3,25	3,17
45	$\mathbf{P}_{ ext{max}}$	5200	3088	5200 3088 4726 1394 1364 1335	1394	1364		3,92	3,96	3,97	3,98	3,99	4,01	4,02	4,03	4,04	4,05	4,06	4,07	4,08	4,09	4,01
50	$\mathbf{P}_{ ext{max}}$	5200	3087	5200 3087 4726 1388 1363 1340	1388	1363		4,86	4,90	4,91	4,86 4,90 4,91 4,93 4,94	4,94	4,95 4,96 4,97	4,96	4,97	4,98	4,99	5,00	5,01	5,02	5,03	4,95
55	\mathbf{P}_{\max}	5200	3069	5200 3069 4732 1385 1364 1345	1385	1364		5,89	5,94	5,95	5,96	5,97	5,98 5,99	5,99	6,00	6,01	6,02 6,03	6,03	6,04	90,9	6,07	5,99
09	$\mathbf{P}_{ ext{max}}$	5200	3052	5200 3052 4739 1383 1366 1350	1383	1366		7,02	7,06	7,07	7,09	7,10	7,11 7,12	7,12	7,13	7,14	7,15	7,16	7,17	7,18	7,19	7,11
65	\mathbf{P}_{\max}	5200	3035	5200 3035 4745 1382 1368 1354	1382	1368		8,24	8,29 8,30		8,31 8,32		8,33 8,34	8,34	8,35	8,35 8,36 8,37 8,39	8,37	8,39	8,40	8,40 8,41 8,42		8,34
70	Pmax	5200	3018	5200 3018 4752 1382 1369 1357	1382	1369		9,56	9,61	9,62	9,56 9,61 9,62 9,63 9,64	9,64	9,65 9,66 9,67 9,68 9,69 9,70 9,72 9,73 9,74	99,6	79,6	89,6	69,6	9,70	9,72	9,73	9,74	99,6

73

Стр.

Часть IV

Таблицы расчетных пролетов для опор КВЛ 10-20 кВ, рассчитанные по ПУЭ 7 издания

1. Кабели и расчетные пролеты

Расчетные пролеты для опор КВЛ 10-20 кВ определены в соответствии с требованиями Правил устройства электроустановок седьмого издания [1].

Расчеты выполнены для подвески кабельных воздушных линий 10-20 кВ с универсальным кабелем сечением EXCEL 3x10/10-10, FXCEL 3x16/10-10, AXCESTM 3x95/25-20.

Величины расчетных габаритных и ветровых пролетов с кабелями марки EXCEL, FXCEL и AXCESTM с номинальным сечениями: EXCEL 3x10/10-10, FXCEL 3x16/10-10, AXCESTM 3x70/16-10, AXCESTM 3x95/25-20 для промежуточных опор нормального габарита и для повышенных опор со стойками разных марок приведены в таблицах 4.2 и 4.16.

Длина ветровых пролетов определена исходя из прочности разных стоек промежуточных опор, длина габаритных пролетов - путем механического расчета кабелей по допустимым стрелам провеса. При этом принятые допустимые стрелы провеса обеспечивают соблюдение требуемых габаритов в пролете от кабелей до земли 5 м в ненаселенной местности и 6,0 м в населенной местности.

При определении расчетного пролета при конкретном проектировании следует принимать меньшее из значений ветрового и габаритного пролетов.

Длину анкерных пролетов при конкретном проектировании рекомендуется принимать не более 1,5 км.

2. Определение расчетных пролетов для районов с повышенными ветровыми и гололедными нагрузками

При определении ветровых и габаритных пролетов, а также при расчете монтажных таблиц в пособии региональные коэффициенты были приняты равными $\gamma_{pw} = \gamma_{pr} = 1$. В некоторых регионах, имеющих определенные особенности местности, ветровые и гололедные нагрузки больше, чем в районе по ветру и гололеду, где они находятся. Это увеличение характеризуется региональными коэффициентами γ_{pw} и γ_{pr} .

В случае, если региональные коэффициенты больше единицы, определять пролеты и условия монтажа необходимо по изложенному ниже правилу.

Для района с нормативным ветровым давлением $W_{_0}$ и региональным коэффициентом γ_{pw} находим ветровое давление в регионе:

$$\boldsymbol{W}_{p} = \boldsymbol{W}_{0} \bullet \boldsymbol{\gamma}_{pw}$$
 ,

Для этого же региона, определяем район по нормативной толщине стенки гололеда, b_3 , где региональный коэффициент по гололеду равен $\gamma_{P\Gamma}$. Находим толщину стенки гололеда для данного региона:

$$b_p = b_{\mathfrak{s}} \cdot \gamma_{pr}$$

По величинам W_p и b_p по соответсвующим таблицам находим расчетные пролеты и условия монтажа провода.

Пример определения для универсального кабеля AXCES 3x95/25-20 сечение $95~{\rm mm}^2$ и стойки CB110-5.

Трасса КВЛ расположена во втором районе по ветру и во втором районе по гололеду, соответсвенно $W_0 = 500~\Pi a$ и $b_a = 15~\text{мм}$.

SHEDBUK	РАСЧЕТНЫЕ ПРОЛЕТЫ	Стр.
	ОПИСАНИЕ	/3

Регионалльные коэффициенты по данным метеусловий равны:

 $\gamma_{\rm pw}=1,25,$ $\gamma_{\rm pr}=1,3,$ при этом находим $W_{\rm p}=500$ • 1,25=625 Па и $b_{\rm p}=15$ • 1,3=19,5 мм. Округляем $W_{\rm p}=650$ Па, $b_{\rm p}=20$ мм.

По таблицам 4.8, 4.9 и 4.10 по столбцу с W = 650 Па и b = 20 мм для стойки CB110 и по строке для кабеля AXCES 3x95/25-20 находим:

- ветровой пролет 89 м;
- габаритный пролет для ненаселенной местности 53 м;
- габаритный пролет для населенной местности 44 м;

По таблице 3.20 стрела провеса кабеля при монтаже для пролета 40 м и температуре воздуха t=0°C составляет 1,67 м.

В тех регионах, где ветровое давление W_p больше 800 Па или гололед b_p больше 25 мм опоры по данному проекту применять не целесообразно, так как длины пролетов между опорами будут слишком малы.

3. Состав таблиц

В представленной ниже таблице 4.1 представлены состав таблиц расчетных пролетов КВЛ 10-20 кВ с указанием их номеров. Для упрощения поиска необходимых таблиц состав приведен по маркам стоек и типу местности.

Таблица 4.1

Стойки	Пролеты	Местность	Номер таблицы
	Одноцеп	ные опоры	
	Габаритные пролеты	Ненаселенная	4.2
CB95-3	Габаритные полеты	Населенная	4.3
СБ93-3	D	Населенная	4.4
	Ветровые пролеты	Ненаселенная	4.4
	Габаритные пролеты	Ненаселенная	4.5
CD105.5	Габаритные полеты	Населенная	4.6
CB105-5	D	Населенная	4.7
	Ветровые пролеты	Ненаселенная	4.7
	Габаритные пролеты	Ненаселенная	4.8
CD110 /	Габаритные полеты	Населенная	4.9
CB110-5	D	Населенная	4.10
	Ветровые пролеты	Ненаселенная	4.10
	Двухцеп	ные опоры	
	Габаритные пролеты	Ненаселенная	4.11
CD105.5	Габаритные полеты	Населенная	4.12
CB105-5	D	Населенная	4.12
	Ветровые пролеты	Ненаселенная	4.13
	Габаритные пролеты	Ненаселенная	4.14
CD110.5	Габаритные полеты	Населенная	4.15
CB110-5	D	Населенная	4.17
	Ветровые пролеты	Ненаселенная	4.16

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Стр. 76

4. Таблицы расчетных пролетов

Таблица 4.2

Одноцепные опо	ры		1	Габај	ритн	ые п	роле	ты д	(ЛЯ Н	енас	елен	ной г	мест	ності	И	
Стойки СВ	95-3,	загл	публе	ение	- 2,2	м, ре	гион	альн	ые к	оэфф	ициє	нты ′	_{урв} =1	; γpr	=1;	
Район по ветру	I,	$W_0 =$	400I	Та	II,	$\mathbf{W}_0 =$	500	Па	III	W_0	= 650	Па	IV,	\mathbf{W}_{0} =	= 800	Па
Марка и сечение							Райс	оп но	голо	лёду	,					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7 _M	56	52	46	42	56	52	46	42	56	52	46	42	52	52	46	42
AXCES 3X70/16-10, h=7 M	48	45	39	36	48	45	39	36	48	45	39	36	47	45	39	36
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
AXCES 3X95/25-20, h=7 _M	50	47	42	38	50	47	42	38	50	47	42	38	47	47	42	38
AXCES 3X95/25-20, h=7 M	48	45	39	36	48	45	39	36	48	45	39	36	47	45	39	36
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
EXCEL 3X10/10-10, h=7 M	72	64	55	49	72	64	55	49	72	64	55	49	67	64	55	49
EXCEL 3X10/10-10, h=7 M	48	45	39	36	48	45	39	36	48	45	39	36	47	45	39	36
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
FXCEL 3X16/10-10, h=7 M	68	61	53	48	68	61	53	48	68	61	53	48	64	61	53	48
FXCEL 3X16/10-10, h=7 M	48	45	39	36	48	45	39	36	48	45	39	36	47	45	39	36
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)

Таблица 4.3

Одноцепные опо	ры			Габа	арит	ные	прол	еты	для	насе	ленн	ой м	естн	ости		
Стойки СВ	95-3,	загл	публе	ение	- 2,2	м, ре	гион	альн	ые к	оэфф	ициє	нты ′	урв=1	; γpr	=1;	
Район по ветру	I,	$\mathbf{W}_{_{0}} =$	4001	Та	II,	$\mathbf{W}_{0} =$	500	Па	III	W_0	= 650	Па	IV,	\mathbf{W}_{0} =	= 800	Па
Марка и сечение							Райс	оп но	голо	лёду	r					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7 M	37	35	31	29	37	35	31	29	37	35	31	29	35	35	31	29
AXCES 3X70/16-10, h=7 _M	37	35	31	29	37	35	31	29	37	35	31	29	35	35	31	29
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
AXCES 3X95/25-20, h=7 M	34	31	28	26	34	31	28	26	34	31	28	26	32	31	28	26
AXCES 3X95/25-20, h=7 M	34	31	28	26	34	31	28	26	34	31	28	26	32	31	28	26
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
EXCEL 3X10/10-10, h=7 M	50	45	38	35	50	45	38	35	50	45	38	35	47	45	38	35
EXCEL 3X10/10-10, h=7 M	48	45	38	35	48	45	38	35	48	45	38	35	47	45	38	35
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)
FXCEL 3X16/10-10, h=7 M	48	43	37	33	48	43	37	33	48	43	37	33	45	43	37	33
FXCEL 3X16/10-10, h=7 _M	48	43	37	33	48	43	37	33	48	43	37	33	45	43	37	33
СИП-4 4x120, h=6,5 м	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)	(30)	(30)	(27)	(25)

h - высота от земли до кабеля (проводов).

В скобках даны расчетные пролеты L около анкерных и угловых анкерных опор.

<mark>зне</mark>рвик

РАСЧЕТНЫЕ ПРОЛЕТЫ

Стр. 77

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.4

Одноцепные опо	ры	В	етроі	вые і	прол	еты ,	для і	насеј	тенн	ой и	нена	селе	нной	мес	гност	ги
Стойки СВ	95-3,	загл	тубле	ение	- 2,2	м, ре	гион	альн	ые к	оэфф	ициє	нты ′	урв=1	<i>;</i> γρг	=1;	
Район по ветру	I,	$\overline{\mathbf{W}_{_{0}}} =$	400I	Та	II,	$W_0 =$	500	Па	III,	, W ₀ =	= 650	Па	IV,	$W_0 =$	= 800	Па
Марка и сечение							Райс	н по	голо	лёду	7					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7 _M	136	120	98	83	101	101	98	83	59	59	59	59	36	36	36	36
AXCES 3X70/16-10, h=7 м СИП-4 4x120, h=6,5 м	61	51	39	32	45	45	39	32	27	27	28	28	15	15	16	16
AXCES 3X95/25-20, h=7 м	109	105	86	74	80	80	80	74	48	48	48	48	30	30	30	30
AXCES 3X95/25-20, h=7 м СИП-4 4x120, h=6,5 м	54	47	36	30	40	40	36	30	24	24	25	25	14	14	14	14
EXCEL 3X10/10-10, h=7 M	191	152	120	101	151	151	120	101	89	89	89	89	51	51	51	51
EXCEL 3X10/10-10, h=7 м СИП-4 4x120, h=6,5 м	74	57	43	35	55	55	43	35	33	33	34	34	19	19	19	19
FXCEL 3X16/10-10, h=7 M	181	145	116	97	138	138	116	97	82	82	82	82	48	48	48	48
FXCEL 3X16/10-10, h=7 м СИП-4 4x120, h=6,5 м	71	56	42	34	53	53	42	34	32	32	32	33	18	18	18	18

h - высота от земли до кабеля (проводов).

Стр. 78

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.5

Одноцепные опо	ры]	Габај	ритн	ые п	роле	ты д	(ЛЯ Н	енас	елен	ной і	мест	ності	И	
Стойки СВ1	105-5	, заг	лубл	ение	- 2,5	м, р	егиоі	налы	ные в	соэфф	рици	енты	урв=	1; γρι	=1;	
Район по ветру	I,	$\mathbf{W}_{_{0}} =$	4001	Па	II,	$\mathbf{W}_0 =$	500	Па	III	W_0	= 650	Па	IV,	\mathbf{W}_{0} =	= 800	Па
Марка и сечение							Райс	н по	голо	лёду	r					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7,7 M	67	61	54	49	67	61	54	49	67	61	54	49	62	61	54	49
AXCES 3X70/16-10, h=7,7 м СИП-4 4x120,	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	58 (50)	56 (48)	49 (42)	45 (39)
h=7,2 M AXCES 3X95/25-20, h=7,7 M	59	55	49	45	59	55	49	45	59	55	49	45	55	55	49	45
AXCES 3X95/25-20, h=7,7 м СИП-4 4x120, h=7,2 м	59 (52)	55 (48)	49 (42)	45 (39)	59 (52)	55 (48)	49 (42)	45 (39)	59 (52)	55 (48)	49 (42)	45 (39)	55 (50)	55 (48)	49 (42)	45 (39)
EXCEL 3X10/10-10, h=7,7 м	84	75	64	57	84	75	64	57	84	75	64	57	79	75	64	57
EXCEL 3X10/10-10, h=7,7 м СИП-4 4x120, h=7,2 м	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	58 (50)	56 (48)	49 (42)	45 (39)
FXCEL 3X16/10-10, h=7,7 M	80	71	61	55	80	71	61	55	80	71	61	55	75	71	61	55
FXCEL 3X16/10-10, h=7,7 м СИП-4 4x120, h=7,2 м	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	58 (50)	56 (48)	49 (42)	45 (39)

Таблица 4.6

Одноцепные опо	ры			Габа	арит	ные	прол	еты	для	насе	ленн	ой м	естн	ости		
Стойки СВ1	105-5	, заг	лубл	ение	- 2,5	м, р	егиоі	налы	ные к	оэфф	рици	енты	урв=	1; γρι	=1;	
Район по ветру	I,	$\mathbf{W}_{_{0}} =$	4001	Па	II,	$\mathbf{W}_0 =$	500	Па	III	W_0	= 650	Па	IV,	\mathbf{W}_{0} =	= 800	Па
Марка и сечение							Райс	н по	голо	лёду	,					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7,7 M	51	47	42	38	51	47	42	38	51	47	42	38	48	47	42	38
AXCES 3X70/16-10, h=7,7 м СИП-4 4x120,	51 (52)	47 (48)	42 (42)	38 (39)	51 (52)	47 (48)	42 (42)	38 (39)	51 (52)	47 (48)	42 (42)	38 (39)	48 (50)	47 (48)	42 (42)	38 (39)
h=7,2 M AXCES 3X95/25-20, h=7,7 M	46	43	38	35	46	43	38	35	46	43	38	35	43	43	38	35
AXCES 3X95/25-20, h=7,7 м СИП-4 4x120, h=7,2 м	46 (49)	43 (45)	38 (40)	35 (37)	46 (49)	43 (45)	38 (40)	35 (37)	46 (49)	43 (45)	38 (40)	35 (37)	43 (46)	43 (45)	38 (40)	35 (37)
EXCEL 3X10/10-10, h=7,7 M	66	59	50	45	66	59	50	45	66	59	50	45	62	59	50	45
EXCEL 3X10/10-10, h=7,7 м СИП-4 4x120, h=7,2 м	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	60 (52)	56 (48)	49 (42)	45 (39)	58 (50)	56 (48)	49 (42)	45 (39)
FXCEL 3X16/10-10, h=7,7 M	63	56	48	44	63	56	48	44	63	56	48	44	59	56	48	44
FXČEL 3X16/10-10, h=7,7 м СИП-4 4x120, h=7,2 м	60 (52)	56 (48)	48 (42)	44 (39)	60 (52)	56 (48)	48 (42)	44 (39)	60 (52)	56 (48)	48 (42)	44 (39)	58 (50)	56 (48)	48 (42)	44 (39)

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около анкерных и угловых анкерных опор.

Стр.

79

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.7

0		D	OFFIN 0.1			OFF V					****				T.V. O. O.	
Одноцепные опо	ры	В	erpo	вые	прол	еты	для і	насеј	тенн	ои и	нена	icejie	ннои	мес	тност	ľИ
Стойки СВ1	105-5	, заг	лубл	ение	- 2,5	м, р	егио	налы	ные к	оэфо	рици	енты	урв=	1; γρι	=1;	
Район по ветру	I,	$\mathbf{W}_{0} =$	4001	Па	II,	$\mathbf{W}_0 =$	500	Па	III	\mathbf{W}_{0}	= 650	Пα	IV,	\mathbf{W}_0	= 800	Па
Марка и сечение							Райс	н по	голо	лёду	7					
кабеля	Ι	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7,7 м	243	203	167	143	187	187	167	143	122	122	122	122	79	79	79	79
AXCES 3X70/16-10, h=7,7 м СИП-4 4x120, h=7,2 м	114	94	73	61	88	88	73	61	57	58	58	58	38	38	39	39
AXCES 3X95/25-20, h=7,7 M	195	177	148	127	152	152	148	127	99	99	99	99	64	64	64	64
АХСЕЅ 3Х95/25-20, h=7,7 м СИП-4 4х120, h=7,2 м	101	87	69	58	78	78	69	58	51	51	51	52	34	34	35	35
EXCEL 3X10/10-10, h=7,7 M	315	256	204	171	277	256	204	171	182	182	182	171	120	120	120	120
EXĆEL 3X10/10-10, h=7,7 M CИП-4 4x120, h=7,2 M	133	106	82	67	107	106	82	67	70	70	71	67	46	46	47	47
FXCEL 3X16/10-10, h=7,7 M	300	245	196	165	257	245	196	165	168	168	168	165	110	110	110	110
FXČEL 3X16/10-10, h=7,7 м СИП-4 4x120, h=7,2 м	129	103	80	66	103	103	80	66	67	68	68	66	45	45	45	45

h - высота от земли до кабеля (проводов).

Стр. 80

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.8

Одноцепные опо	ры]	Габај	ритн	ые п	роле	ты д	(ЛЯ Н	енас	елен	ной м	месті	ності	И	
Стойки СВ1	10-5	, заг	лубл	ение	- 2,5	м, р	егио	налы	ные к	соэфс	рици	енты	γрв=	1; γρι	=1;	
Район по ветру	I,	$\overline{\mathbf{W}_{0}} =$	400I	Та	II,	$\mathbf{W}_{0} =$	500	Па	III	$\overline{\mathbf{W}_{0}}$	= 650	Па	IV,	\mathbf{W}_{0} =	= 800	Па
Марка и сечение							Райс	н по	голо	лёду	7					
кабеля	Ι	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=8,2 m	73	67	59	54	73	67	59	54	73	67	59	54	68	67	59	54
AXCES 3X70/16-10, h=8,2 м СИП-4 4x120,	68	62	55	50	68	62	55	50	68	62	55	50	66	62	55	50
h=7,7 M AXCES 3X95/25-20,	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)
h=8,2 м	65	60	53	49	65	60	53	49	65	60	53	49	61	60	53	49
AXCES 3X95/25-20, h=8,2 m	65	60	53	49	65	60	53	49	65	60	53	49	61	60	53	49
СИП-4 4x120, h=7,2 м	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)
EXCEL 3X10/10-10, h=8,2 M	92	81	69	62	92	81	69	62	92	81	69	62	87	81	69	62
EXCEL 3X10/10-10, h=8,2 м	68	62	55	50	68	62	55	50	68	62	55	50	66	62	55	50
СИП-4 4x120, h=7,2 м	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)
FXCEL 3X16/10-10, h=8,2 м	87	78	67	60	87	78	67	60	87	78	67	60	83	78	67	60
FXCEL 3X16/10-10, h=8,2 м	68	62	55	50	68	62	55	50	68	62	55	50	66	62	55	50
СИП-4 4x120, h=7,7 м	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)

Таблица 4.9

Одноцепные оп	оры			Габ	арит	ные	прол	іеты	для	насе	ленн	юй м	естн	ости	[
Стойки СВ	110-5	, заг	лубл	ение	- 2,5	м, р	егио	налы	ные к	соэфс	рици	енты	урв=	1; γρι	=1;	
Район по ветру	I,	$\mathbf{W}_{_{0}} =$	400I	Та	II,	$\mathbf{W}_{0} =$	500	Па	III	, W ₀ =	= 650	Па	IV,	\mathbf{W}_{0}	= 800	Па
Марка и сечение							Райо	н по	голо	лёду	7					
кабеля	Ι	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=8,2 M	59	54	48	44	59	54	48	44	59	54	48	44	55	54	48	44
AXCES 3X70/16-10, h=8,2 M	59	54	48	44	59	54	48	44	59	54	48	44	55	54	48	44
СИП-4 4x120, h=7,7 м	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	49)	(45)	(58)	(56)	(49)	(45)
AXCES 3X95/25-20, h=8,2 M	53	49	44	40	53	49	44	40	53	49	44	40	49	49	44	40
AXCES 3X95/25-20, h=8,2 M	53	49	44	40	53	49	44	40	53	49	44	40	49	49	44	40
СИП-4 4x120, h=7,7 м	(56)	(51)	(46)	(42)	(56)	(51)	(46)	(42)	(56)	(51)	(46)	(42)	(52)	(51)	(46)	(42)
EXCEL 3X10/10-10, h=8,2 M	76	67	57	52	76	67	57	52	76	67	57	52	71	67	57	52
EXCEL 3X10/10-10, h=8,2 M	68	62	55	50	68	62	55	50	68	62	55	50	66	62	55	50
СИП-4 4x120, h=7,7 м	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)
FXCEL 3X16/10-10, h=8,2 M	72	64	55	50	72	64	55	50	72	64	55	50	68	64	55	50
FXCEL 3X16/10-10, h=8,2 M	68	62	55	50	68	62	55	50	68	62	55	50	66	62	55	50
СИП-4 4x120, h=7,7 м	(60)	(56	(49)	(45)	(60)	(56)	(49)	(45)	(60)	(56)	(49)	(45)	(58)	(56)	(49)	(45)

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около анкерных и угловых анкерных опор.

Стр. 81

ОДНОЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.10

Одноцепные опо	оры	В	етро	вые	прол	еты	для :	насе.	пенн	ой и	нена	селе	нной	і мес	тнос	ти
Стойки СВ1	110-5	, заг	лубл	ение	- 2,5	м, р	егио	налы	ные к	оэфо	рици	енты	урв=	1; γρι	=1;	
Район по ветру	I,	$\mathbf{W}_{0} =$	4001	Па	II,	$\mathbf{W}_0 =$	500	Па	III.	\mathbf{W}_{0}	= 650	Па	IV,	\mathbf{W}_0	= 800	Па
Марка и сечение							Райс	он по	голс	лёду	7					
кабеля	I	II	III	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=8,2 M	221	185	151	129	171	171	151	129	111	111	111	111	71	71	71	71
AXCES 3X70/16-10, h=8,2 м СИП-4 4x120, h=7,7 м	104	85	66	55	80	80	66	55	52	52	52	35	35	35	35	35
AXČES 3X95/25-20, h=8,2 м	178	161	133	115	138	138	133	115	89	89	89	89	58	58	58	58
AXCES 3X95/25-20, h=8,2 м СИП-4 4х120, h=7,7 м	92	78	62	52	71	71	62	52	46	46	47	47	31	31	31	31
EXCEL 3X10/10-10, h=8,2 м	290	233	185	155	254	233	185	155	165	165	165	155	108	108	108	108
EXCEL 3X10/10-10, h=8,2 м СИП-4 4x120, h=7,7 м	121	96	74	60	98	96	74	60	63	63	64	60	42	42	42	42
FXCEL 3X16/10-10, h=8.2 M	275	222	178	150	234	222	178	150	153	153	153	150	99	99	99	99
FXCEL 3X16/10-10, h=8,2 м СИП-4 4x120, h=7,7 м	118	94	72	59	94	94	72	59	61	61	61	59	40	40	41	41

h - высота от земли до кабеля (проводов).

82

РАСЧЕТНЫЕ ПРОЛЕТЫ ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.11

Двухцепные опоры				Гас	Габаритные пролеты пролеты для ненаселенной местности	ые пр	олеты	проле	ты дл	я нен	аселен	ной м	естнос	СТИ		
Стойки CB105-5 , заглубление - 2,5 м , региональные коэффициенты γ_{p_B} = 1 ; γ_{p_I} = 1 ;	CB10	5-5, 3a	глубле	ние - 2	,5 м, р	егиона	ПБНЫ	коэфф		ТЫ Урв	=1; ypr	<u>=</u> ;				
Район по ветру		$I, W_0 = 400\Pi a$	400Пв	-1		II, $W_0 =$	500Па			III, $W_0 =$	= 650Па	В		IV, $W_0 =$	= 800Па	а
							Рай	Район по гололёду	гололё	ду						
Марка и сечение каосля	П	П	III	7	I	П	III	N	I	II	Ш	N	П	П	Ш	IV
AXCES 3X70/16-10, h=7,7 M, AXCES 3X70/16-10, h=7,2 M	49	44	39	35	49	44	39	35	49	44	39	35	46	44	39	35
AXCES 3X70/16-10, h=7,7 M, AXCES 3X70/16-10, h=7,2 M.	4	40	34	31	4	40	34	31	44	40	34	31	43	40	34	31
$CM\Pi-4 \ 4x120, h=6,7 \ M,$ $CM\Pi-4 \ 4x120, h=6,7 \ M$	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
AXCES 3X95/25-20, h=7,7 M, AXCES 3X95/25-10, h=7,2 M	44	40	35	32	44	40	35	32	44	40	35	32	41	40	35	32
AXCES 3X95/25-20, h=7,7 M, AXCES 3X95/25-10, h=7,2 M,	44	40	34	31	44	40	34	31	44	40	34	31	41	40	34	31
CIIII-4 4x120, h=6,7 m, CIIII-4 4x120, h=6,7 m	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
EXCEL 3X10/10-10, h=7,7 M, EXCEL 3X10/10-10, h=7,2 M	61	54	45	40	61	54	45	40	61	54	45	40	58	54	45	40
EXCEL 3X10/10-10, h=7,7 M, EXCEL 3X10/10-10, h=7,2 M	4	40	34	31	44	40	34	31	44	40	34	31	43	40	34	31
$CM\Pi-4 \ 4x120, h=6.7 \ M,$ $CM\Pi-4 \ 4x120, h=6.7 \ M$	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
FXCEL 3X16/10-10, h=7,7 M, FXCEL 3X16/10-10, h=7,2 M	58	51	44	39	58	51	44	31	58	51	44	39	55	51	44	39
EXCEL 3X16/10-10, h=7,7 m, EXCEL 3X16/10-10, h=7,2 m	44	40	34	31	44	40	34	39	44	40	34	31	43	40	34	31
CVIII-4 4x120, h=6,7 M, CVIII-4 4x120, h=6,7 M	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
h - высота от земли по кабеля (проводов)	OTOR)															

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около угловой промежуточной, анкерной и угловой анкерной опоры.

р. 83

РАСЧЕТНЫЕ ПРОЛЕТЫ ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.12

Двухцепные опоры					La6	Габаритные пролеты для населенной местности	ые пр	меты	для на	аселен	ІНОЙ М	естнос	сти			
Стойки СВ105-5, заглубление - 2,5 м, региональные коэффициенты γ_{ps} =1; γ_{pr} =1;	CB105	5-5, 3al	лубле	ние - 2	,5 м, р	егиона	льные	коэфф	оициен	ТЫ Урв	=1; ypr	=1;				
Район по ветру		$I, W_0 = 400 \Pi a$	400Па			II, $W_0 = 0$	500Па			III, $W_0 =$	= 650Па	8		V, W ₀ =	IV, $W_0 = 800\Pi a$	7
Modern Crimons a constant							Рай	он по	Район по гололёду	ДУ						
імарка и сечение каосля	Ι	II	III	IV	I	П	III	\sim	П	П	III	N	П	II	Ш	IV
AXCES 3X70/16-10, h=7,7 M, AXCES 3X70/16-10, h=7,2 M	35	32	28	25	35	32	28	25	35	32	28	25	33	32	28	25
AXCES 3X70/16-10, h=7,7 M, AXCES 3X70/16-10, h=7.2 M.	35	32	28	25	35	32	28	25	35	32	28	25	33	32	28	25
$CM\Pi - 4 \times 120, h = 6.7 \text{ M},$ $CM\Pi - 4 \times 120, h = 6.7 \text{ M}$	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
AXCES 3X95/25-20, h=7,7 M, AXCES 3X95/25-10, h=7,2 M	31	29	25	23	31	29	25	23	31	29	25	23	30	29	25	23
AXCES 3X95/25-20, h=7,7 M, AXCES 3X95/25-10, h=7,2 M,	31	29	25	23	31	29	25	23	31	29	25	23	30	29	25	23
CVIII-4 $4x120$, $h=6,7 \text{ M}$, CVIII-4 $4x120$, $h=6,7 \text{ M}$	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
EXCEL 3X10/10-10, h=7,7 M, EXCEL 3X10/10-10, h=7,2 M	45	39	33	30	45	39	33	30	45	39	33	30	42	39	33	30
EXCEL 3X10/10-10, h=7,7 M, EXCEL 3X10/10-10, h=7,2 M	44	39	33	30	44	39	33	30	44	39	33	30	42	39	33	30
$CM\Pi-4 \ 4x120, h=6.7 \ M,$ $CM\Pi-4 \ 4x120, h=6.7 \ M$	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
FXCEL 3X16/10-10, h=7,7 M, FXCEL 3X16/10-10, h=7,2 M	42	38	32	29	42	38	32	29	42	38	32	29	40	38	32	29
FXCEL 3X16/10-10, h=7,7 M, FXCEL 3X16/10-10, h=7,2 M	42	38	32	29	42	38	32	29	42	38	32	29	40	38	32	29
$CM\Pi-4 \ 4x120, h=6.7 \ M,$ $CM\Pi-4 \ 4x120, h=6.7 \ M$	(32)	(29)	(25)	(23)	(32)	(53)	(25)	(23)	(32)	(29)	(25)	(23)	(31)	(29)	(25)	(23)
h - высота от земпи по кабеля (проводов)) TOR)															

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около угловой промежуточной, анкерной и угловой анкерной опоры.

РАСЧЕТНЫЕ ПРОЛЕТЫ

ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

внервик

Таблица 4.13

Двухцепные опоры				Ветр	Ветровые пролеты для населенной и ненаселенной местности	проле	гы для	насел	іенной	і и нег	населе	нной	местн	ости		
Стойки СВ105-5, заглубление - 2,5	CB105	5-5, 3a	глубле	ние - 2	,5 M, p	м, региональные коэффициенты $\gamma_{ps}=1; \gamma_{pr}=1;$	льные	коэфф	ициен	ТЫ Урв	=1; ypr	<u>=</u> ;				
Район по ветру		$[, W_0 =$	$I, W_0 = 400 \Pi a$			II, $W_0 = 2$	500Па		П	III, $W_0 =$	= 650∏a	8		V, W ₀ =	$IV, W_0 = 800\Pi a$	a
								Район по гололёду	гололё	ду						
Марка и сечение кабеля	Ι	II	III	IV	I	II	III	IV	Ι	II	III	IV	I	II	III	IV
AXCES 3X70/16-10, h=7,7 m, AXCES 3X70/16-10, h=7,2 m	102	85	69	58	92	92	69	58	48	48	48	48	32	32	32	32
AXCES 3X70/16-10, h=7,7 m, AXCES 3X70/16-10, h=7,2 m, CIII-4 4x120, h=6,7 m, CIIII-4 4x120, h=6,7 m	50	42	33	28	39	39	33	28	25	25	25	25	16	16	16	16
AXCES 3X95/25-20, h=7,7 m, AXCES 3X95/25-10, h=7,2 m	81	74	61	52	61	61	61	52	40	40	40	40	26	26	26	26
AXCES 3X95/25-20, h=7,7 m, AXCES 3X95/25-10, h=7,2 m, CVIII-4 4x120, h=6,7 m, CVIII-4 4x120, h=6,7 m	45	39	31	26	34	34	31	26	22	22	22	23	14	14	14	14
EXCEL 3X10/10-10, h=7,7 M, EXCEL 3X10/10-10, h=7,2 M	136	108	84	70	115	108	84	70	71	71	71	70	45	45	45	45
EXCEL 3X10/10-10, h=7,7 m, EXCEL 3X10/10-10, h=7,2 m CIII-4 4x120, h=6,7 m, CIIII-4 4x120, h=6,7 m	09	48	37	31	47	47	37	31	30	30	31	31	19	19	20	20
EXCEL 3X16/10-10, h=7,7 m, FXCEL 3X16/10-10, h=7,2 m	129	103	81	89	106	103	81	89	99	99	99	99	42	42	42	42
EXCEL 3X16/10-10, h=7,7 m, EXCEL 3X16/10-10, h=7,2 m CIII-4 4x120, h=6,7 m, CIII-4 4x120, h=6,7 m	58	47	36	30	45	45	36	30	29	29	29	30	19	19	19	19

h - высота от земли до кабеля (проводов).

Стр.

85

РАСЧЕТНЫЕ ПРОЛЕТЫ ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Tahmun 4.14

Двухцепные опоры					барит	Габаритные пролеты пролеты для ненаселенной местности	олеты	подп	еты д	ія нен	аселен	ІНОЙ М	естно		11001uuu +1.1+	47.4
Стойки СВ110-5, заглубление	CB11(0 -5 , 3a	глубле	зние - 2	- 2,5 м, І	м, региональные коэффициенты $\gamma_{p_B}=1; \gamma_{p_I}=1;$	альные	жоэфс	рицие	ты үр	3=1; γ _p	_=1;				
Район по ветру		$I, W_0 = 400\Pi a$	400П			II, $W_0 =$: 500Па	_		III, W ₀ =	= 650∏a	्छ		IV, $W_0 =$	= 800Па	a
Mostro to outside to outside							Pař	оп но	Район по гололёду	ёду						
марка и сечение каосля	Ι	п		\leq	П	II	III	N	I	II	Ш	IV	I	II	III	IV
AXCES 3X70/16-10, h=8,2M, AXCES 3X70/16-10, h=7,7 M	55	50	43	39	55	50	43	39	55	50	43	39	51	50	43	39
AXCES 3X70/16-10, h=8,2 M, AXCES 3X70/16-10, h=7,7 M,	51	46	39	36	51	46	39	36	51	46	39	36	50	46	39	36
CIIII-4 4x120, h=7,2 M, CIIII-4 4x120, h=7,2 M	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
AXCES 3X95/25-20, h=8,2 M, AXCES 3X95/25-10, h=7,7 M	49	45	39	36	49	45	39	36	49	45	39	36	46	45	39	36
AXCES 3X95/25-20, h=8,2 M, AXCES 3X95/25-10, h=7,7 M,	49	45	39	36	49	45	39	36	49	45	39	36	46	45	39	36
СИП-4 4х120, h=7,2 м, СИП-4 4х120, h=7,2 м	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
EXCEL 3X10/10-10, h=8,2 M, EXCEL 3X10/10-10, h=7,7 M	89	09	50	45	89	09	50	45	89	09	50	45	65	09	50	45
EXCEL 3X10/10-10, h=8,2 M, EXCEL 3X10/10-10, h=7,7 M	51	46	39	36	51	46	39	36	51	46	39	36	50	46	39	36
$CM\Pi-4 \ 4x 120, \ h=7,2 \ M,$ $CM\Pi-4 \ 4x 120, \ h=7,2 \ M$	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
FXCEL 3X16/10-10, h=8,2 M, FXCEL 3X16/10-10, h=7,7 M	64	57	49	44	64	57	49	44	64	57	49	44	61	57	49	44
FXCEL 3X16/10-10, h=8,2 м, FXCEL 3X16/10-10, h=7,7 м	51	46	39	36	51	46	39	36	51	46	39	36	50	46	39	36
CIII-4 4x120, h=7,2 M, CIII-4 4x120, h=7,2 M	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
(H) 100 000	(4040															

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около угловых промежуточных, анкерных и угловых анкерных опор.

Стр.
86

РАСЧЕТНЫЕ ПРОЛЕТЫ ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.15

Pagion no Berpy I, $W_0 = 400\Pi$ a II, $W_0 = 500\Pi$ a III, $W_0 = 650\Pi$ a II, $W_0 = 650\Pi$ a III, $W_0 = 650\Pi$ a	Двухцепные опоры				Γ	абари	Габаритные пролеты пролеты для населенной местности	ролет	оди 19	леты д	іля на	селен	ной ме	эстнос.	ГИ		
I. $W_0 = 400\Pi$ a II. $W_0 = 500\Pi$ a III. $W_0 = 500\Pi$ a III. $W_0 = 500\Pi$ a III. $W_0 = 650\Pi$ a IV. $W_0 = 800\Pi$ a Pairon no.con: 200 III. $W_0 = 650\Pi$ a IV. $W_0 = 800\Pi$ a 1 III. III. III. III. IV. III. III. IV. III. III. IV. III. IIII. III. I	Стойкі	и СВ11	0-5, 38	аглубле	1	2,5 M, I	региона	альные	фсом :	фицие	нты үр	3=1; γ _p	r=1;				
Pagical Incompanish 43 39 34 31 43 39 34 31 40 39 34 443 39 34 31 43 39 34 31 40 39 34 43 39 34 31 43 39 34 31 40 39 34 443 39 34 31 43 39 34 31 40 39 34 443 39 34 31 43 39 34 31 43 39 34 31 40 39 34 38 35 31 28 35 31 28 38 35 31 28 38 35 31 28 35 31 28 35 31 38 35 31 38 35 31 38 35 31 38 35 31 38 36	Район по ветру		I, $W_0 =$	= 400П			\bigotimes_{0}				× o	Ιш	[a	I	\bigotimes_{0}		
1 II III IV I III II III IV I II III II III II III II III II III II II III II III III II III II III III II III II)							Pař	оп ној	голол	ёду						
43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 43 39 34 31 40 39 34 41 37 32 31 28 34 31 43 39 34 31 40 39 34 38 35 31 28 38 35 31 28 38 35 31 28 36 31 38 35 31 441 37 32 34 37 32 32 31 38 35 31 38 35 31 38 34 40 36 34 41 40 <td>Марка и сечение каоеля</td> <td>Н</td> <td>ш</td> <td>H</td> <td>N</td> <td>П</td> <td>П</td> <td>III</td> <td>N</td> <td>I</td> <td>п</td> <td>H</td> <td>N</td> <td>П</td> <td>П</td> <td>H</td> <td>\leq</td>	Марка и сечение каоеля	Н	ш	H	N	П	П	III	N	I	п	H	N	П	П	H	\leq
43 39 34 31 43 39 34 31 43 39 34 31 40 39 34 40 39 34 40 39 34 40 30 34 31 43 39 34 31 40 39 34 31 40 39 34 31 28 34 31 28 34 31 28 34 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 38 35 31 28 35 31 28 35 31 28 35 31 28 35 31 38 35 31 38 35 31 38 35 31 38 35 31 38 35 31 38 34 40 36 31 30 30 30 30 30<	AXCES 3X70/16-10, h=8,2 M, AXCES 3X70/16-10, h=7,7 M	43	39	34	31	43	39	34	31	43	39	34	31	40	39	34	31
(41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (40) (37) (32) (39) (40) (37) (32) (37) (32) (39) (40) (37) (32) (37) (32) (39) (41) (37) (32) (39) (41) (37) (32) (39) (41) (37) (32) (39) (41) (37) (32) (39) (41) (37) (32) (39) (41) (31) (32) (39) (41) (31) (32) (39) (41) (31) (32) (39) (41) (31) (32) (39) (41) (31) (32) (39) (41) (31) (31) (32) (32) (31) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) (32) <th< td=""><td>AXCES 3X70/16-10, h=8,2 M,</td><td>43</td><td>30</td><td>34</td><td>3.1</td><td>43</td><td>30</td><td>34</td><td>7.</td><td>43</td><td>30</td><td>34</td><td>2.</td><td>40</td><td>30</td><td>34</td><td>31</td></th<>	AXCES 3X70/16-10, h=8,2 M,	43	30	34	3.1	43	30	34	7.	43	30	34	2.	40	30	34	31
38 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 28 35 31 38 35 31 38 35 31 38 35 31 38 34 47 40 36 54 47 40 36 54 47 40 36 51 40 36 51 40 36 51 40 36 51 40 36 51 40 36 51 40 36 51 40 36 41 30 40 30 40 30 40 30 40 30 40<	CHII-4 4x120, h=7,2 m, CHII-4 4x120, h=7,2 m,	(41)	(37)	(32)	(29)	(14)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
38 35 31 28 35 31 28 35 31 28 38 35 31 28 36 31 28 36 31 28 36 31 28 36 31 28 38 35 31 28 36 31 32 32 32 32 32 31 38 34 40 36 34 47 40 36 51 40 36 51 40 36 51 40 36 51 40 36 51 46 39 36 51 46 39 36 51 46 39 36 50 46 39 36 50 46 39 7 41 37 32 32 41 37 32 34 48 45 38 8 50 45 38 34 50 45 38 34 48 45	AXCES 3X95/25-20, h=8,2 M, AXCES 3X95/25-10, h=7,7 M	38	35	31	28	38	35	31	28	38	35	31	28	36	35	31	28
(41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) (29) (41) (37) (32) <th< td=""><td>AXCES 3X95/25-20, h=8,2 M, AXCES 3X95/25-10, h=7,7 M,</td><td>38</td><td>35</td><td>31</td><td>28</td><td>38</td><td>35</td><td>31</td><td>28</td><td>38</td><td>35</td><td>31</td><td>28</td><td>36</td><td>35</td><td>31</td><td>28</td></th<>	AXCES 3X95/25-20, h=8,2 M, AXCES 3X95/25-10, h=7,7 M,	38	35	31	28	38	35	31	28	38	35	31	28	36	35	31	28
7 54 47 40 36 54 47 40 36 51 47 40 36 51 46 39 36 51 46 39 36 51 46 39 36 51 46 39 36 51 46 39 36 50 46 39 36 50 46 39 46 39 36 50 46 39 36 50 46 39 36 50 46 39 36 46 39 36 46 39 36 46 39 36 46 39 36 46 39 46 39 46 39 46 39 46 39 46 39 48 45 38 50 45 38 34 50 45 38 34 48 45 38 41) (37) (32) (29) (41) (37)	СИП-4 4х120, h=7,2 м, СИП-4 4х120, h=7,2 м	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(38)	(37)	(32)	(29)
, 51 46 39 36 51 46 39 36 51 46 39 36 51 46 39 36 30 36 30 36 30 30 30 30 30 30 30 30 30 30 30 30 30	EXCEL 3X10/10-10, h=8,2 м, EXCEL 3X10/10-10, h=7,7 м	54	47	40	36	54	47	40	36	54	47	40	36	51	47	40	36
(41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (41) (37) (32) (40) (37) (32) (32)	EXCEL 3X10/10-10, h=8,2 M, EXCEL 3X10/10-10, h=7,7 M	51	46	39	36	51	46	39	36	51	46	39	36	50	46	39	36
50 45 38 34 50 45 38 34 50 45 38 34 50 45 38 34 48 45 38 (41) (37) (32) (29) (41) (37) (32) (29) (40) (37) (32)	СИП-4 4х120, h=7,2 м, СИП-4 4х120, h=7,2 м	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)
, 50 45 38 34 50 45 38 34 50 45 38 34 50 45 38 34 48 45 38 34 48 45 38 (41) (37) (32) (29) (41) (37) (32) (29) (40) (37) (32)	FXCEL 3X16/10-10, h=8,2 м, FXCEL 3X16/10-10, h=7,7 м	50	45	38	34	50	45	38	34	50	45	38	34	48	45	38	34
(41) (32) (29) (41) (37) (32) (41) (37) (32) (40) (37) (32)	FXCEL 3X16/10-10, h=8,2 м, FXCEL 3X16/10-10, h=7,7 м	50	45	38	34	50	45	38	34	50	45	38	34	48	45	38	34
	CИП-4 4x120, h=7,2 м, СИП-4 4x120, h=7,2 м	(41)		(32)	(29)	(41)	(37)	(32)	(29)	(41)	(37)	(32)	(29)	(40)	(37)	(32)	(29)

h - высота от земли до кабеля (проводов). В скобках даны расчетные пролеты L около угловых промежуточных, анкерных и угловых анкерных опор.

_	
Стр	

тр. 87

РАСЧЕТНЫЕ ПРОЛЕТЫ ДВУХЦЕПНЫЕ ОПОРЫ КВЛ с СОВМЕСТНОЙ ПОДВЕСКОЙ ВЛИ

Таблица 4.16

Двухцепные опоры			Be	гровы	Ветровые пролеты пролеты для населенной и ненаселенной местности	еты п	ролег	или г	населе	енной	и нен	аселен	ной м	естнос	Ти	
Стойки СВ110-5, заглубление	CB110	-5 , 3a	лубле	1	2,5 M, p	м, региональные коэффициенты $\gamma_{p_B}=1; \gamma_{p_\Gamma}=1;$	льные	коэфф	рициен	ты үр	=1; γ _p	r=1;				
Район по ветру	I	I, $W_0 = 400\Pi a$	400Па		I	II, $W_0 =$	500Па	1	II	III, $W_0 =$	= 650∏a	a	I	IV, $W_0 =$	= 800∏a	a
Manager of the other of the oth							Paŭ	он но	Район по гололёду	ду						
імарка и сечение калеля	Ι	II	Ш	IV	Ι	II	Ш	IV	Ι	II	III	IV	I	П	III	IV
AXCES 3X70/16-10, h=8,2 m, AXCES 3X70/16-10, h=7,7 m	92	77	62	53	69	69	62	53	44	44	44	44	29	29	29	29
AXCES 3X70/16-10, h=8,2 m, AXCES 3X70/16-10, h=7,7 m, CIII-4 4x120, h=7,2 m, CIII-4 4x120, h=7,2 m	46	39	30	25	35	35	30	25	23	23	23	23	14	14	14	15
AXCES 3X95/25-20, h=8,2M, AXCES 3X95/25-10, h=7,7 M	73	29	55	47	55	55	55	47	36	36	36	36	24	24	24	24
AXCES 3X95/25-20, h=8,2 m, AXCES 3X95/25-10, h=7,7 m, CIII-4 4x120, h=7,2 m, CIII-4 4x120, h=7,2 m	41	36	28	24	31	32	28	24	20	20	20	20	13	13	13	13
EXCEL 3X10/10-10, h=8,2 M, EXCEL 3X10/10-10, h=7,7 M	124	86	92	63	104	86	92	63	64	64	64	63	41	41	41	41
EXCEL 3X10/10-10, h=8,2 m, EXCEL 3X10/10-10, h=7,7 m CIII-4 4x120, h=7,2 m, CIII-4 4x120, h=7,2 m	55	44	34	28	43	43	34	28	28	28	28	28	17	17	18	18
FXCEL 3X16/10-10, h=8,2 m, FXCEL 3X16/10-10, h=7,7 m	117	93	73	61	96	93	73	61	59	59	59	59	38	38	38	38
FXCEL 3X16/10-10, h=8,2 m, FXCEL 3X16/10-10, h=7,7 m CMII-4 4x120, h=7,2 m, CMII-4 4x120, h=7,2 m	53	43	33	28	41	41	33	28	27	27	27	27	17	17	17	17

h - высота от земли до кабеля (проводов).

знервик	ДЛЯ ЗАМЕТОК	Стр.
	ДЛЛ SAMETOR	88

Часть V

НОМЕНКЛАТУРА ОДНОЦЕПНЫХ И ДВУХЦЕПНЫХ ЖЕЛЕЗОБЕТОННЫХ ОПОР С ПОДВЕСКОЙ УНИВЕРСАЛЬНОГО КАБЕЛЯ EXCEL (FXCEL, AXCES) И С СОВМЕСТНОЙ ПОДВЕСКОЙ СИП-4

НОМЕНКЛАТУРА ОДНОЦЕПНЫХ ОПОР

Стр. 90

СХЕМЫ УСТАНОВКИ СТОЕК

Промежуточные одноцепные опоры ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3, ППБк10(20)-4

Угловые промежуточные одноцепные опоры УПБк10(20)-1, УПБк10(20)-2, УПБк10(20)-3, ПУПБк10(20)-4

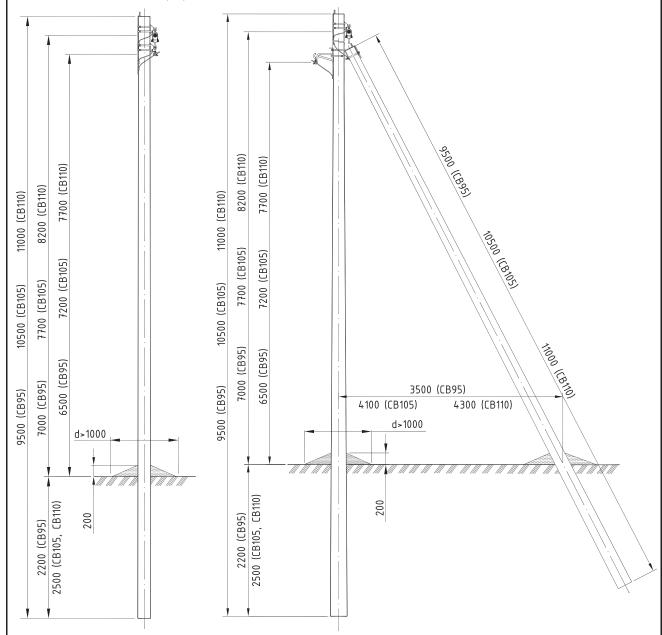
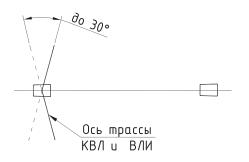
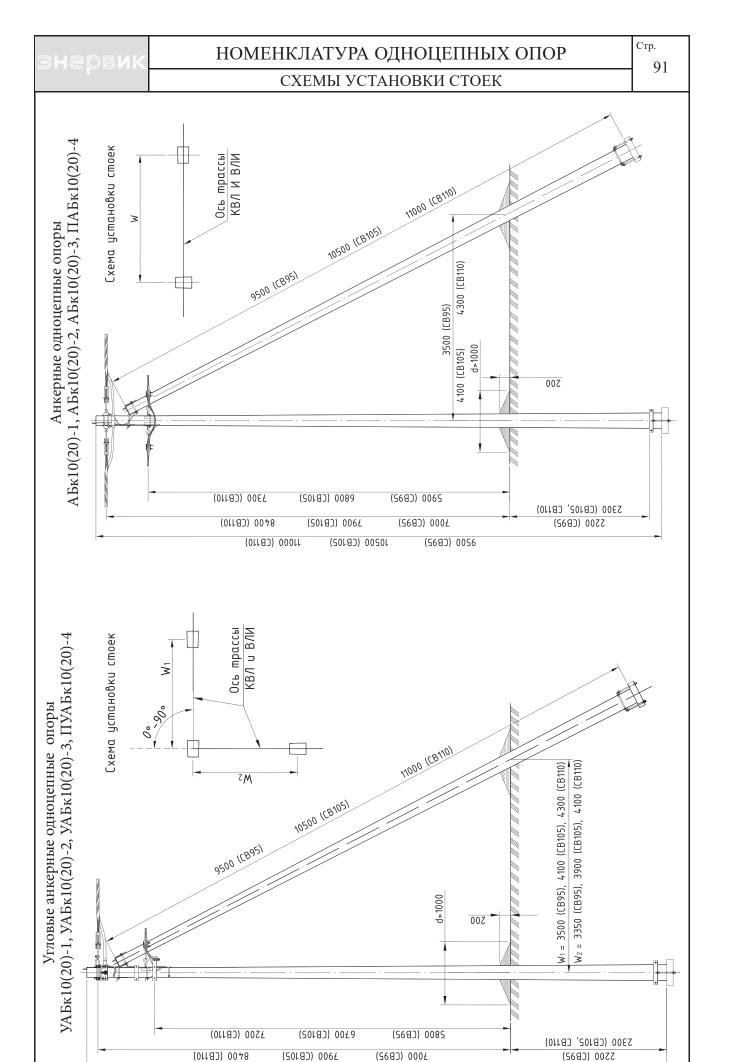
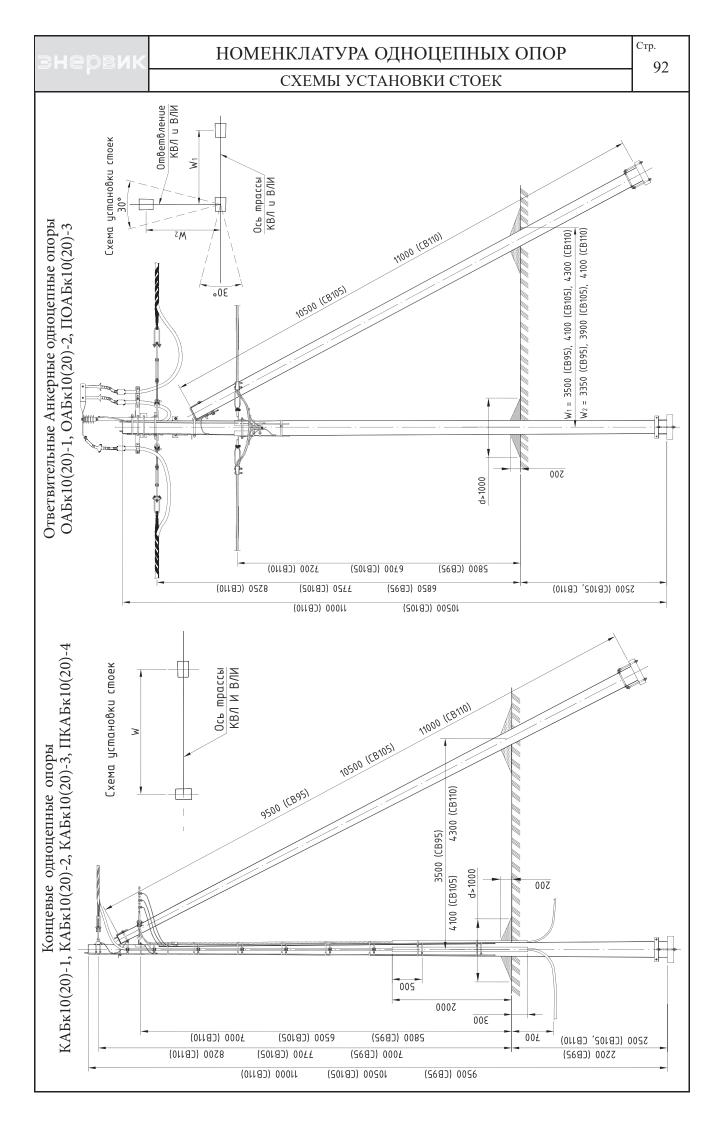




Схема установки стойки

Схема установки стоек



11000 (CB110)

10200 (CB102)

6200 (CB62)

<mark>зне</mark>рвик

НОМЕНКЛАТУРА ДВУХЦЕПНЫХ ОПОР

СХЕМЫ РАСПОЛОЖЕНИЯ СТОЕК

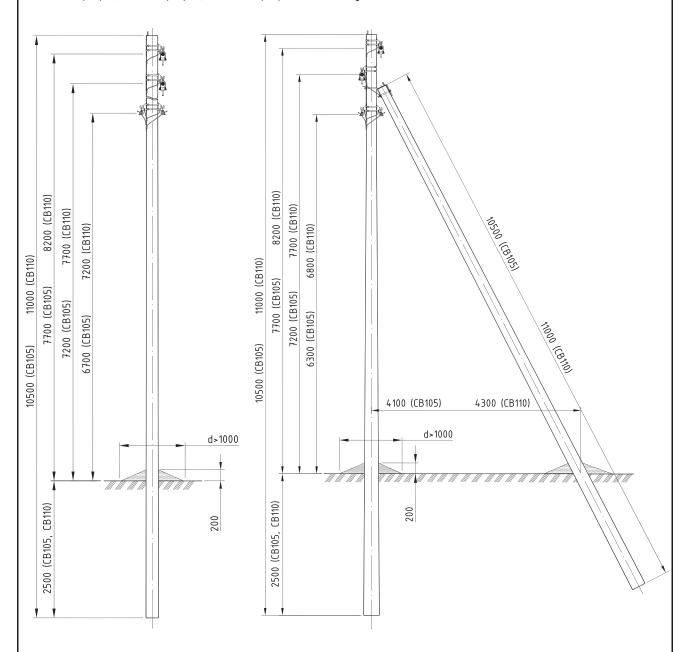
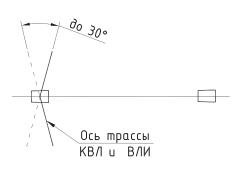
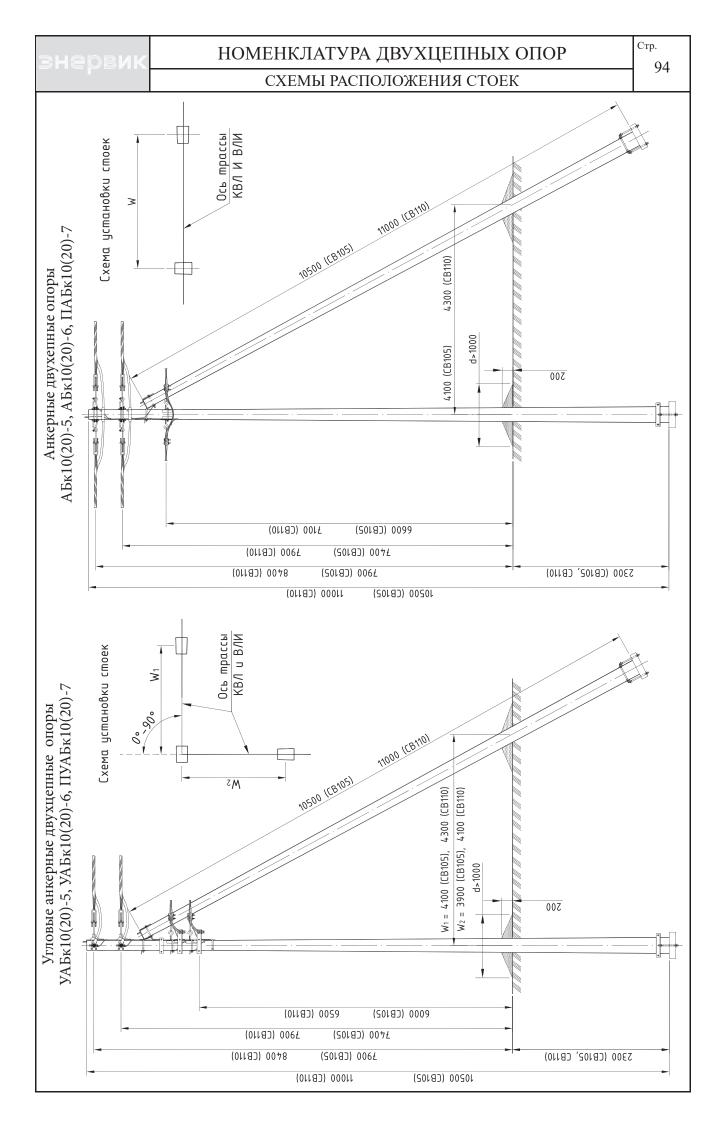
93

.

Стр.

Промежуточные двухцепные опоры Π Бк10(20)-5, Π Бк10(20)-6, Π ПБк10(20)-7

Угловые промежуточные двухцепные опоры УПБк10(20)-5, УПБк10(20)-6, ПУПБк10(20)-7

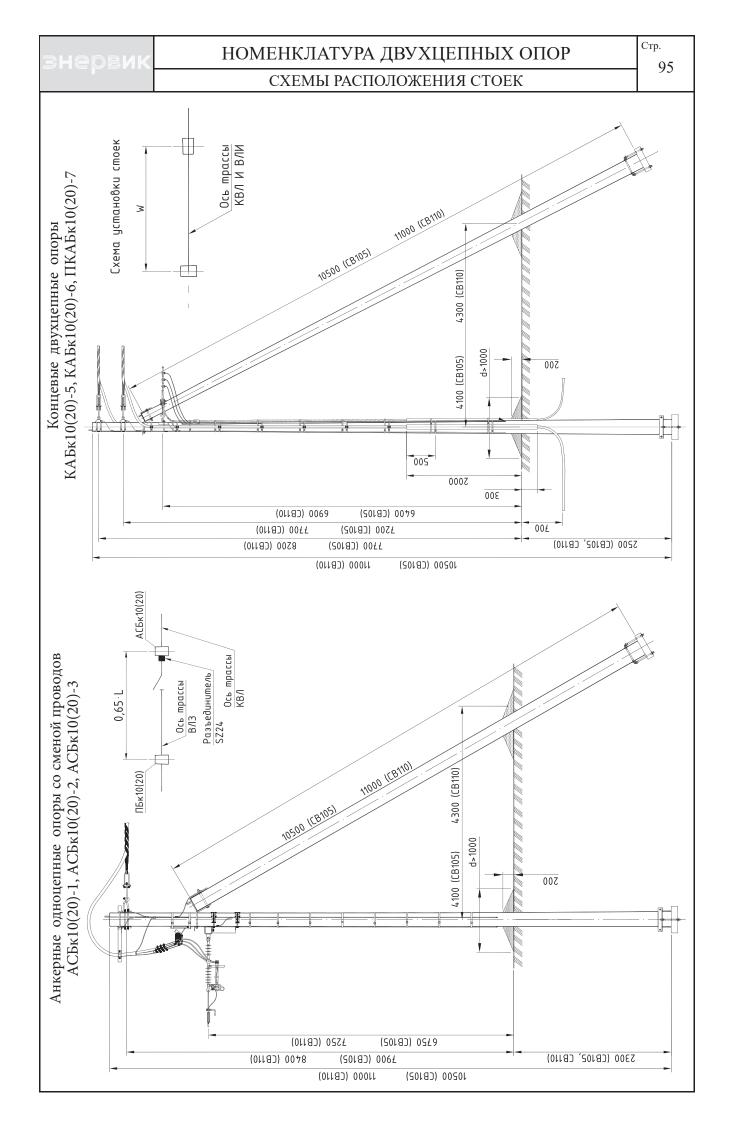
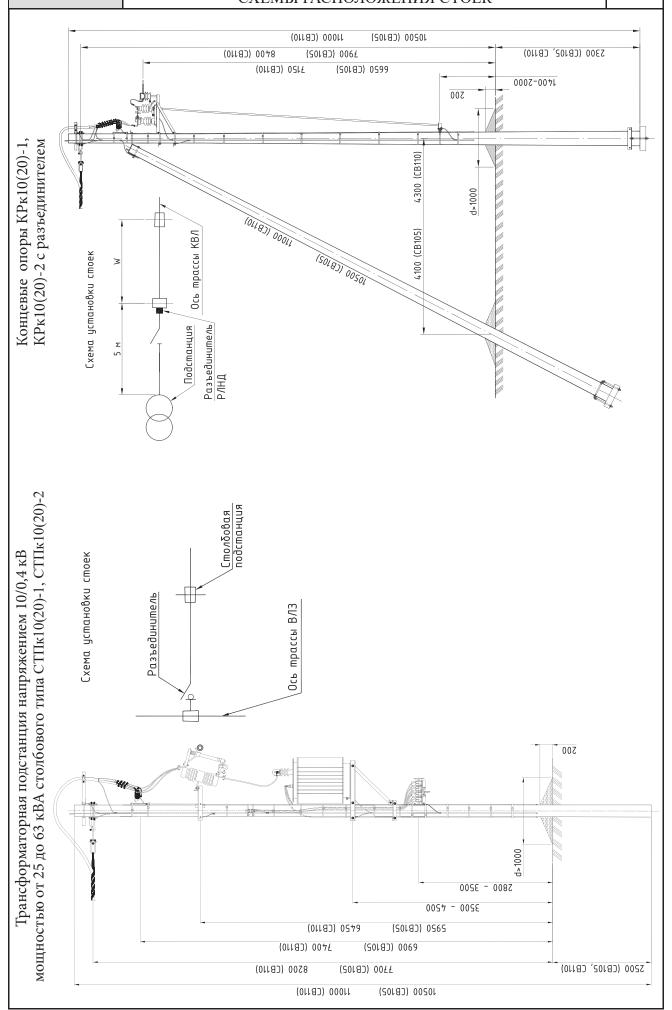

Схема установки стойки

Схема установки стоек



Стр. 96

НОМЕНКЛАТУРА ОПОР. ОТДЕЛЬНЫЕ ЭЛЕМЕНТЫ

СХЕМЫ РАСПОЛОЖЕНИЯ СТОЕК

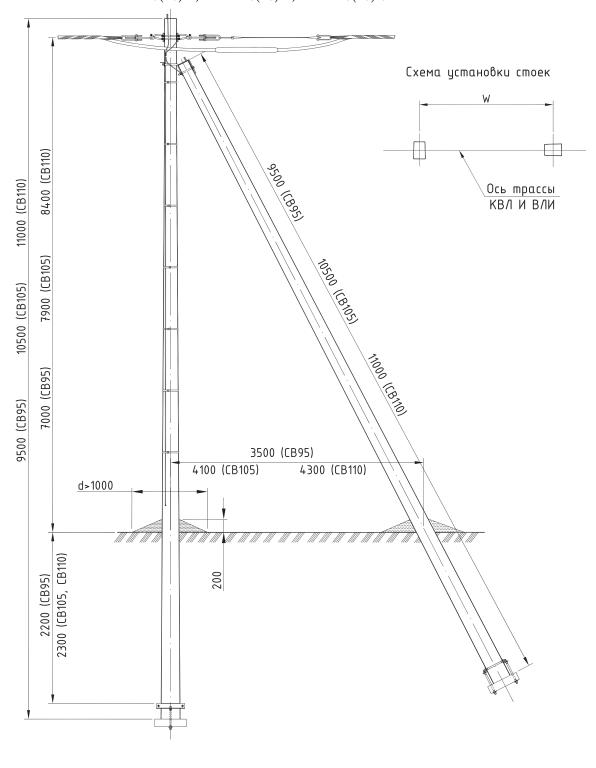

НОМЕНКЛАТУРА ОПОР. ОТДЕЛЬНЫЕ ЭЛЕМЕНТЫ

СХЕМА УСТАНОВКИ СТОЕК

97

Стр.

Анкерная опора соединение кабеля в петле AMБк10(20)-1, AMБк10(20)-2, AMБк10(20)-3

знервик	ДЛЯ ЗАМЕТОК	Стр. 98

Часть VI

КОНСТРУКЦИИ ОДНОЦЕПНЫХ ЖЕЛЕЗОБЕТОННЫХ ОПОР ВЛ 10-20 кВ С ПОДВЕСКОЙ УНИВЕРСАЛЬНОГО КАБЕЛЯ (EXCEL, FXCEL, AXCESTM) И С СОВМЕСТНОЙ ПОДВЕСКОЙ САМОНЕСУЩИХ ИЗОЛИРОВАННЫХ ПРОВОДОВ (СИП-4) ОДНОЦЕПНОЙ ВЛ 0,4 кВ

ОДНОЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3, ППБк10(20)-4

Стр.

100

СХЕМА РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCES™)

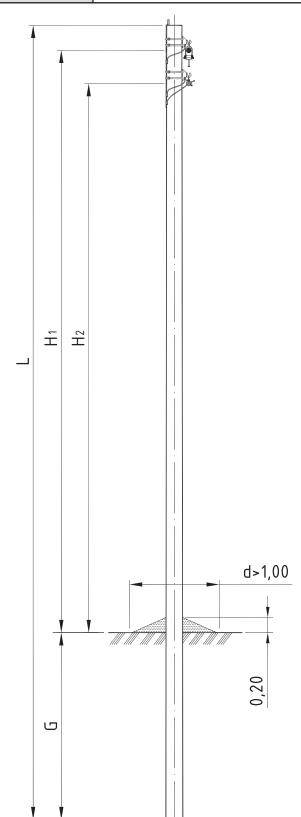
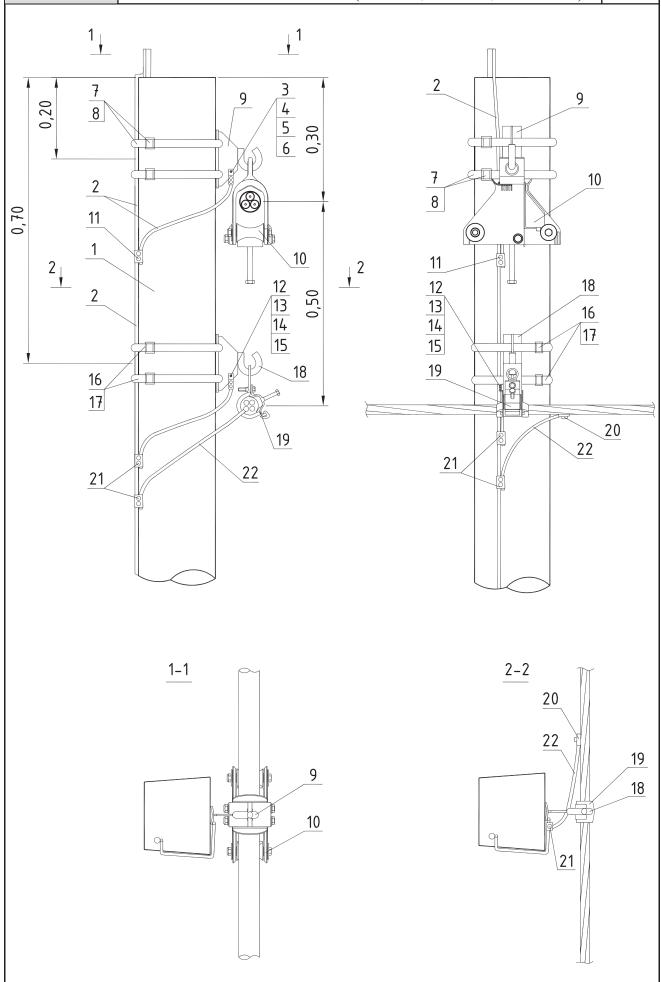


Схема установки стойки


	Cm	οῦκα		Изгидающий	ш	ш	G	Линейная	
Tun опоры	Марка	L	Кол.	момент	H ₁	H ₂	ū	арматура	Примечание
	Πάρκα	М	шm.	mc.m	М	М	М	cmp.	
ПБк10(20)-1	CB95-3	9,5	1	3,0	7,0	6,5	2,2		
ПБк10(20)-2	CB105-5	10,5	1	5,0	7,7	7,2	2,5	101	
ПБк10(20)-3	CB110-5	11,0	1	5,0	8,2	7,7	2,5	101	
ППБк10(20)-4	CB110-5	11,0	1	5,0	8,2	7,7	2,5		

ОДНОЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ **ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3, ППБк10(20)-4**

ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCES TM)

101

Стр.

ОДНОЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ ПБк10(20)-1, ПБк10(20)-2, ПБк10(20)-3, ППБк10(20)-4

Стр.

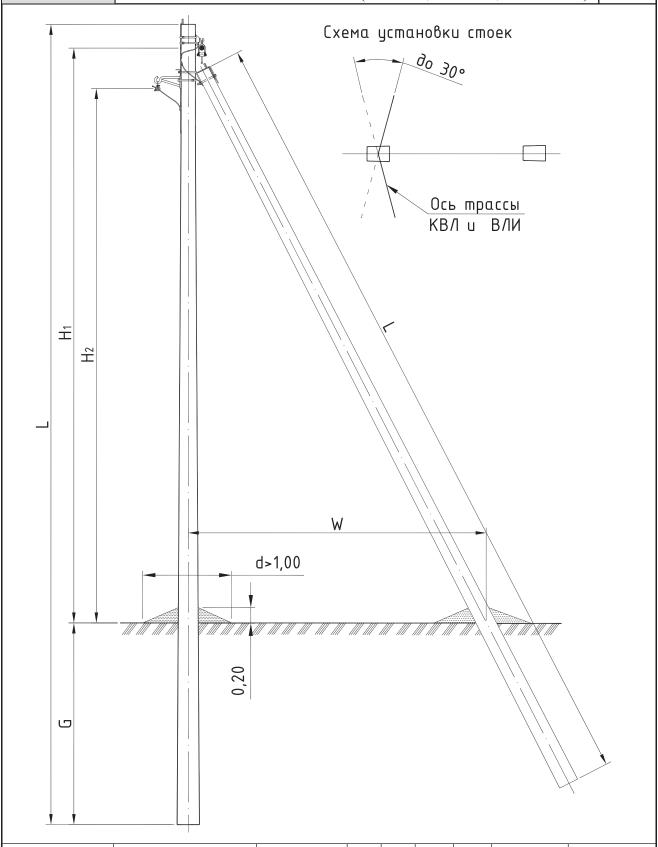
102

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL, AXCES TM)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	пздечпа				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	1	190	
	Металлоконструкции	КВЛ 10-20 кВ				
2	Проводник заземления ГОСТ2590-71	B10	М	2,0		
3	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	1	233	
4	Болт ГОСТ 7798-70	M8	шm.	1		
5	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	2		
6	Гайка ГОСТ 5915-70	M8	шm.	1		
7	Скрепа	C0T36.2R	шm.	2	231	
8	Лента бондажная	COT37.2R	М	4,0	231	
9	Крюк*	S0T29.10R (S0T39R)	шm.	1	230	
	Арматура магистралі	КВЛ 10−20 кЕ	3			
10	Зажим поддерживающий	S099 (S0150)	шm.	1	217	SO99 - для EXCEL u FXCEL SO150 - для AXCES™
11	Зажим плашечный	SL37.2	шm.	1	233	
	Металлоконструкци	⊔ ВЛИ 0,4 кВ				
12	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	1	233	
13	Болт ГОСТ 7798-70	M8	шm.	1		
14	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	2		
15	Гайка ГОСТ 5915-70	M8	шm.	1		
16	Скрепа	COT36.2R	шm.	2	231	
17	Лента бандажная	COT37.2R	М	2,0	231	
18	Крюк	S0T29.10R (S0T39R)	шm.	1	230	
	Арматура магистрал	и В/ІИ 0,4 кВ				
19	Зажим поддерживающий	S0130	шm.	1	217	
20	Зажим прокалывающий	SLIP22.1	шm.	1	234	
21	Зажим прокалывающий	SLIP22.127	шm.	2	234	
22	Провод изолированный**	СИП-4	шm.	1,0		

Примечание:

* При подвеске универсальных кабелей EXCEL и FXCEL применять крюк SOT29.10R а при подвеске универсального кабеля $AXCES^{\text{TM}}$ использовать крюк SOT39R.


Верхний и нижний бандаж выполняется в два витка.

** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

ОДНОЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ УПБк10(20)-1, УПБк10(20)-2, УПБк10(20)-3, ПУПБк10(20)-4

CXEMA РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCESTM)

103

	Стойка			Изгидающий	H,	ш	c.	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	'1	H ₂	L	VV	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	стр.	
УПБк10(20)−1	CB95-3	9,5	2	3,0	7,0	6,5	2,2	3,5		
УПБк10(20)−2	CB105-5	10,5	2	5,0	7,7	7,2	2,5	4,1	107	
УПБк10(20)−3	CB110-5	11,0	2	5,0	8,2	7,7	2,5	4,3	104	
ПУПБк10(20)-4	CB110-5	11,0	2	5,0	8,2	7,7	2,5	4,3		

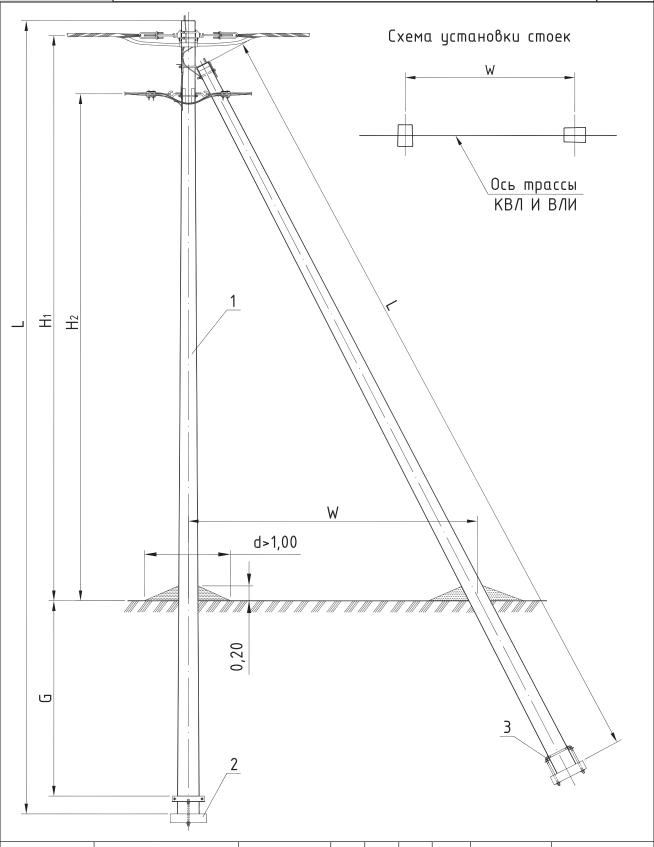
ОДНОЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ Стр. \mathbf{y} Нервик \mathbf{y} ПБк $\mathbf{10(20)}$ -1, \mathbf{y} ПБк $\mathbf{10(20)}$ -2, \mathbf{y} ПБк $\mathbf{10(20)}$ -3, $\mathbf{\Pi}$ у ПБк $\mathbf{10(20)}$ -4 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCESTM) 7 0,20 06'0 09'0 <u>17</u> <u>21</u> <u>20</u> 1–1 2-2 (0) (O)

ОДНОЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ Стр. УПБк10(20)-1, УПБк10(20)-2, УПБк10(20)-3, ПУПБ10(20)-4

105

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL, AXCES TM)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	2	190	
	Металлоконструкции	КВЛ 10-20 кВ				
2	Кронштейн*	94 (91)	шm.	1	202	
3	Заземляющий проводник	SH705.1R	шm.	1	208	
4	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
5	Проводник заземления ГОСТ2590-71	B10	М	2,0		
6	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	1	233	
7	Болт ГОСТ 7798-70	M8	шm.	1		
8	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	2		
9	Гайка ГОСТ 5915-70	M8	шm.	1		
10	Скрепа	COT36.2R	шm.	2	231	
11	Лента бандажная	COT37.2R	М	4,0	231	
12	Крюк**	SOT39R	шm.	1	230	
	Арматура магистрали	ы КВЛ 10−20 кВ	3			
13	Зажим поддерживающий	S099 (S0150)	шm.	1	217	SO99 – для EXCEL u FXCEL SO150 – для AXCES™
14	Зажим плашечный	SL37.2	шm.	2	233	
	Металлоконструкци	и ВЛИ 0,4 кВ				
15	Скрепа	COT36.2R	шm.	2	231	
16	Лента бандажная	COT37.2R	М	4,0	231	
17	Крюк наружного угла***	PD3.3R (PD3.2R)	шm.	1	229	
	Арматура магистрал	nu В/IИ 0,4 кВ				
18	Зажим поддерживающий	S0130	шm.	1	217	
19	Зажим прокалывающий	SLIP22.1	шm.	1	234	
20	Зажим прокалывающий	SLIP22.127	шm.	1	234	
21	Провод изолированный****	СИП-4	М	0,1		


Примечание:

- * Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- ** Верхний и нижний бандаж выполняется в два витка.
- *** В месте крепления крюка наружного угла к опоре, бандаж выполняется в два витка.
- **** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4**

Стр.

СХЕМА РАССПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCES™)

	Стойка			Изгидающий	ш	ш	G	W	Линейная		
Tun опоры	Марка	L	Кол.	момент	H ₁	H ₂	u	W	арматура	Примечание	
	Марка	М	шm.	mc.m	М	М	М	М	стр.		
АБк10(20)-1	CB95-3	9,5	2	3,0	7,0	5,9	2,2	3,5			
АБк10(20)-2	CB105-5	10,5	2	5,0	7,9	6,8	2,3	4,1	107		
АБк10(20)-3	CB110-5	11,0	2	5,0	8,4	7,3	2,3	4,3	107		
ПАБк10(20)-4	CB110-5	11,0	2	5,0	8,4	7,3	2,3	4,3			

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ Стр. **ΑБ**κ10(20)-1, **ΑБ**κ10(20)-2, **ΑБ**κ10(20)-3, Π**ΑБ**κ10(20)-4 107 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 16 \mathfrak{S} 12 8621 22 23 2 2 7 29 24 15 15 0٤′0

07'0

1'00

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4** Стр. 108 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 16 25 \mathbb{C} 12 21 22 23 2-2 -20

знервик

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4**

Стр.

109

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетоннь	іе изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	2	190	
2	Плита	П–3и	шm.	2	215	
	Металлоконструкци	u КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	1	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления ГОСТ2590-71	B10	М	8,5		9,5м для стоек CB110 9,0м для стоек CB105
8	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	2	233	
9	Болт ГОСТ 7798-70	M8	шm.	2		
10	Шαūδα ΓΟCT 18123-82	D _{вн.рез} =8,4мм	шm.	4		
11	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	2		
12	Крюк***	SOT39R	шm.	2	230	
13	Taлpen	S0155.1	шm.	2	214	
14	Ckpena .	COT36.2R	шm.	13	231	
15	Лента бандажная	COT37.2R	М	15,0	231	
	Арматура магистрал	ли КВЛ 10-20 кВ				
16	Спиральная вязка	PLP120 (PLP125) (PLP130)	шm.	2	218	
17	Защитный кожух****		шm.	1	222	
18	Бандаж	PER15.387	шm.	2	231	
19	Зажим плашечный	SL37.2	шm.	3	233	
	Металлоконструкц	ии ВЛИ 0,4 кВ				
20	Траверса	TM78	шm.	1	194	
21	Траверса	TM78a	шm.	1	194	
22	Болт	SOT4.8R (SOT4.9R)	шm.	2	229	
23	Гайка ГОСТ 5915-70	M16	шm.	2		
24	Заземляющий проводник	SH705R	шm.	1	208	
	Арматура магистро	али ВЛИ 0,4 кВ				
25	Зажим натяжной	S0118.1201S	шm.	2	226	
26	Зажим прокалывающий	SLIP22.1	шm.	1	234	
27	Зажим прокалывающий	SLIP22.127	шm.	1	234	
28	Зажим плашечный	SL37.2	шm.	1	233	
29	Провод изолированный	СИП-4	М	0,5		

Примечание:

- * Стяжка SH702R применяется для стоек СВ95 и СВ110, стяжка SH703R для стоек СВ105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Верхний и нижний бандаж выполняется в два витка.
- **** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4** Стр. 110 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 9 9 2 2 1 [1 [2] 20 20 16 23 23 15 15 15 1 € 0٤'0

00'l

07'0

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4** Стр. 111 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 21 9 9 2-2 -25 T 16 ∞ 6 9

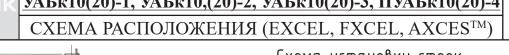
знервик

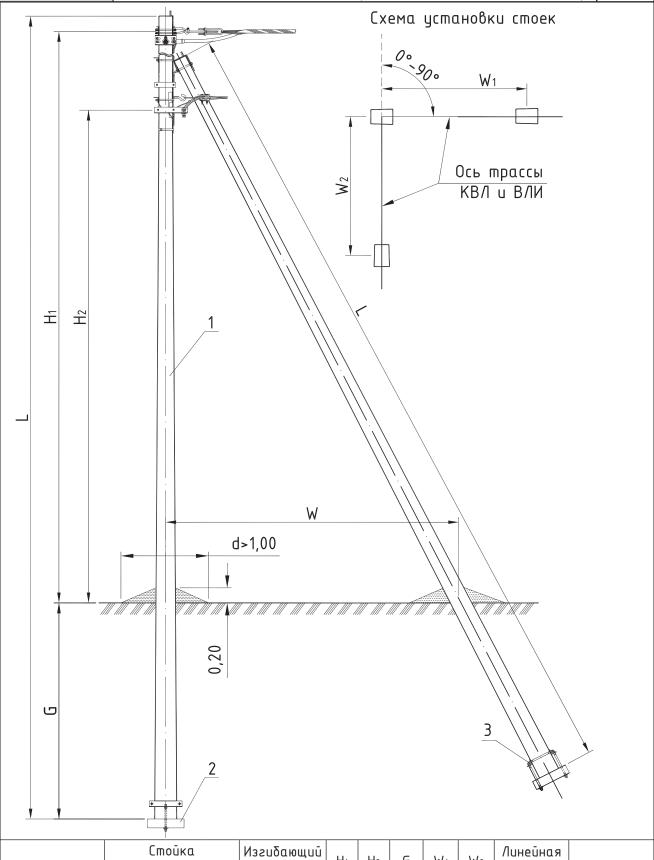
ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-1, АБк10(20)-2, АБк10(20)-3, ПАБк10(20)-4**

СПЕЦИФИКАЦИЯ (AXCESTM)

Стр.

112


	I	1	1			T
Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонн	ные изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шт.	2	190	
2	Плита	П-3и	шm.	2	215	
	Металлоконструкц	uu КВЛ 10-20 кВ	·			
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	2	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления ГОСТ2590-71	B10	М	7,5		8,5м для стоек СВ110 8,0м для стоек СВ105
8	Крюк	S0T142.2R	шm.	1	212	
9	Ta <i>n</i> pen	S0155.1	шm.	2	214	
	Арматура магистр	али КВЛ 10-20 кВ				
10	Спиральная вязка	PLP180 (PLP200)	шm.	2	218	
11	Защитный кожух****		шm.	1	222	
12	Бандаж	PER15.387	шm.	2	231	
13	Зажим плашечный	SL37.2	шm.	2	233	
14	Скрепа	COT36.2R	шm.	11	231	
15	Бандажная лента	COT37.2R	М	11,0	231	
	Металлоконструк	ции ВЛИ 0,4 кВ				
16	Траверса	TM78	шm.	1	194	
17	Траверса	TM78a	шm.	1	194	
18	Болт	S0T4.8 (S0T4.9)	шm.	2	229	
19	Γαῦκα ΓΟСΤ 5915-70	M16	шm.	2		
20	Заземляющий проводник	SH705	шm.	1	208	
	Арматура магист					
21	Зажим натяжной	S0118.1201S	шm.	2	226	
22	Зажим прокалывающий	SLIP22.1	шm.	1	234	
23	Зажим прокалывающий	SLIP22.127	шm.	1	234	
24	Зажим плашечный	SL37.2	шm.	1	233	
25	Провод изолированный****	СИП-4	М	0,5		


Примечание:

- * Стяжка SH702R применяется для стоек СВ95 и СВ110, стяжка SH703R для стоек СВ105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- **** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10,(20)-2, УАБк10(20)-3, ПУАБк10(20)-4

Стр.

	Стойка			Изѕибающий	H ₁	H ₂	G	W ₁	W ₂	Линейная	
Tun опоры	Марка	L	Кол.	момент	111	112	u	W1	W Z	арматура	Примечание
	Пирки	М	шm.	mc.m	М	М	М	М	М	стр.	
ЧАБк10(20)−1	CB95-3	9,5	3	3,0	7,0	5,8	2,2	3,5	3,35		
ЧАБк10(20)−2	CB105-5	10,5	3	5,0	7,9	6,7	2,3	4,1	3,9	114	
ЧАБк10(20)−3	CB110-5	11,0	3	5,0	8,4	7,2	2,3	4,3	4,1	114	
ПУАБк10(20)-4	CB110-5	11,0	3	5,0	8,4	7,2	2,3	4,3	4,1		

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4 Стр. 114 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 16 23 13 b **b** 24 27 19 12 20 25 <u>`</u> 0 21 20 4 [12] 1 1 9 8 15 0٤'0 08'0 0,20 りし0 95'0 05'l

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4 Стр. ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 1–1 2-2 0 0

ЗНЕРВИК

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL)

Стр.

116

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонны	ые изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	3	190	
2	Плита	П-3и	шm.	3	215	
	Металлоконструкци	iu КВ/I 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	3	209	
4	Кронштейн**	94 (91)	шm.	2	202	
5	Заземляющий проводник	SH705.1R	шm.	2	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	2		
7	Проводник заземления	B10	М	8,5		9,5м для стоек CB110 9,0м для стоек CB105
8	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	2	233	
9	Болт ГОСТ 7798-70	M8	шm.	2		
10	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	4		
11	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	2		
12	Крюк***	SOT39R	шm.	2	230	
13	Талреп	S0155.1	шm.	2	214	
	Арматура магистра	ли КВЛ 10-20 кВ				
14	Скрепа	COT36.2R	шm.	13	231	
15	Лента бандажная	COT37.2R	М	15,0	231	
16	Спиральная вязка	PLP120 (PLP125, PLP130)	шm.	2	218	
17	Защитный кожух****		шm.	1	222	
18	Бандаж	PER15.387	шm.	2	231	
19	Зажим плашечный	SL37.2	шm.	4	233	
	Металлоконструки	ии ВЛИ 0,4 кВ				
20	Траверса	TM78A	шm.	2	194	
21	Хомут	X51 (X1)	шm.	2	207	
22	Заземляющий проводник	SH705R	шm.	2	208	
	Арматура магистр	али ВЛИ 0,4 кВ				
23	Зажим натяжной	S0118.1201S	шm.	2	226	
24	Зажим прокалывающий	SLIP22.1	шm.	1	234	
25	Зажим прокалывающий	SLIP22.127	шm.	1	234	
26	Зажим плашечный	SL37.2	шm.	2	233	
27	Провод изолированный*****	СИП-4	М	0,5		

Примечание:

- * Стяжка SH702R применяется для стоек СВ95 и СВ110, стяжка SH703R для стоек СВ105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Верхний и нижний бандаж выполняется в два витка.
- **** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- ***** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

При углах поворота трассы ВЛИ 0,4 кВ (СИП-4) до 60° С позиции 20 и 21 (траверса ТМ78А и хомут X51 (X1)), можно заменить на крюк SOT39R (2 шт), бандажную ленту COT37.2R (4 м) и скрепу COT36.2R (2 шт). Верхний и нижний бандаж выполнить в два витка. (см. Книгу 1.5).

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ Стр. <u>УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4</u> 117 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 19 19 \ **|** 20 23 16 21 (1) 99 0 <u>@</u> ∞ 16 15 0٤'0 21,0 98'0 08'0 02'0 ์ ว่าไ′้ 0 05'l

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4 Стр. ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 1–1 J 0 2-2

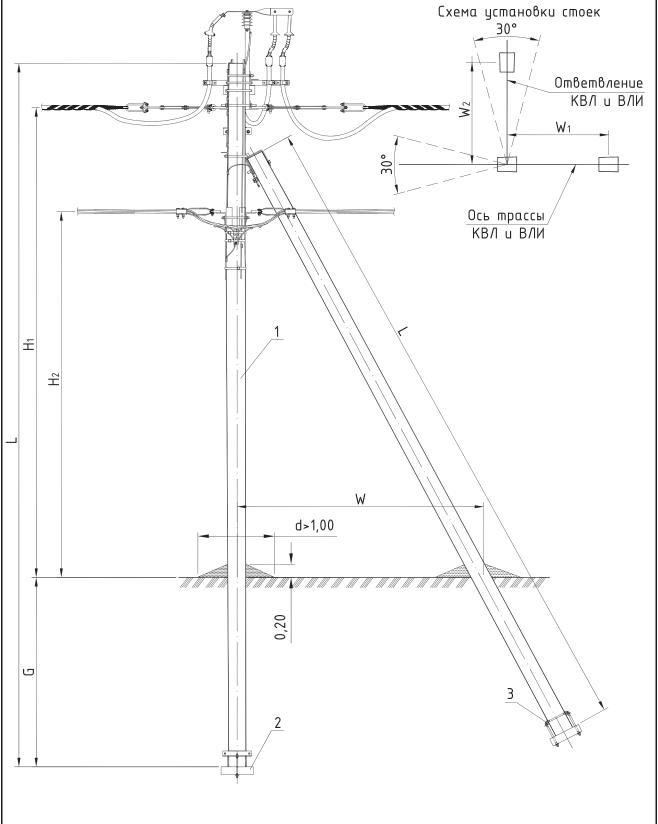
знервик

ОДНОЦЕПНЫЕ УГЛОВЫЕ АНКЕРНЫЕ ОПОРЫ УАБк10(20)-1, УАБк10(20)-2, УАБк10(20)-3, ПУАБк10(20)-4

Стр.

119

СПЕЦИФИКАЦИЯ (AXCESTM)


Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонны	е изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	3	190	
2	Плита	П–3и	шm.	3	215	
	Металлоконструкци	и КВЛ 10−20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	3	209	
4	Кронштейн**	94 (91)	шm.	2	202	
5	Заземляющий проводник	SH705.1R	шm.	4	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	2		
7	Проводник заземления	B10	М	7,5		8,5м для стоек СВ110 8,0м для стоек СВ105
8	Крюк	SOT142R	шm.	2	211	
9	Ta <i>n</i> pen	S0155.1	шm.	2	214	
	Арматура магистрал	пи КВ/I 10-20 кВ				
10	Спиральная вязка	PLP180 (PLP200)	шm.	2	218	
11	Защитный кожух***		шm.	1	222	
12	Бандаж	PER15.387	шm.	2	231	
13	Зажим плашечный	SL37.2	шm.	4	233	
14	Скрепа	COT36.2R	шm.	13	231	
15	Лента бандажная	COT37.2R	М	13	231	
	Металлоконструкц	ии ВЛИ 0,4 кВ				
16	Траверса	TM78A	шm.	2	194	
17	Хомут	X51 (X1)	шm.	2	207	
18	Заземляющий проводник	SH705R	шm.	2	208	
	Арматура магистро	или ВЛИ 0,4 кВ				
19	Зажим натяжной	S0118.1201S	шm.	2	226	
20	Зажим прокалывающий	SLIP22.1	шm.	1	234	
21	Зажим прокалывающий	SLIP22.127	шm.	1	234	
22	Зажим плашечный	SL37.2	шm.	2	233	
23	Провод изолированный****	СИП-4	М	0,5		

Примечание:

- * Стяжка SH702R применяется для стоек CB95 и CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- **** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

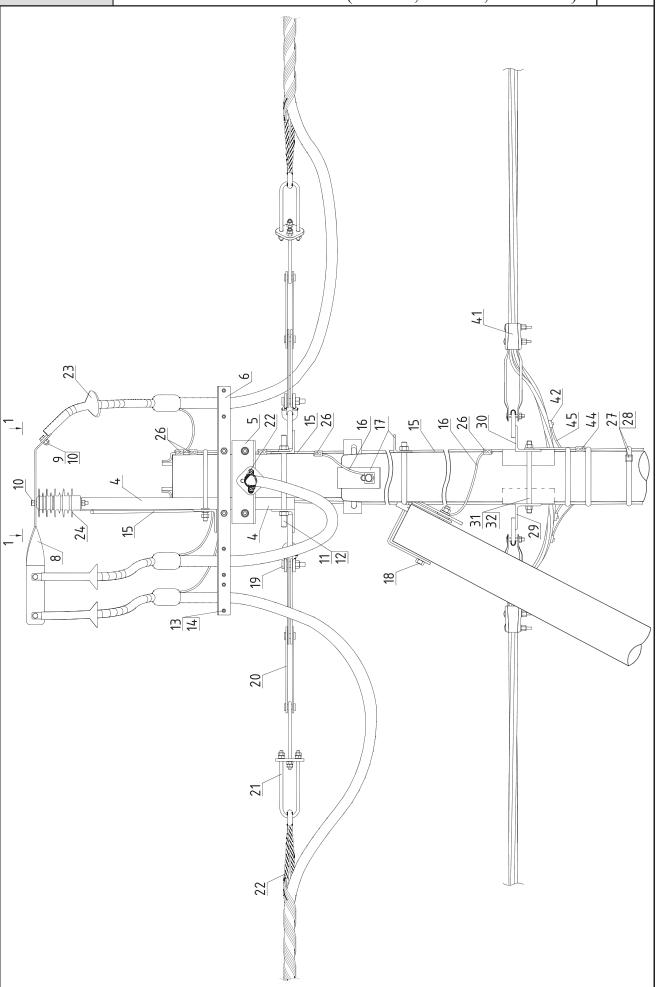
При углах поворота трассы ВЛИ 0,4 кВ (СИП-4) до 60° С позиции 16 и 17 (траверса ТМ78А и хомут X51 (X1)), можно заменить на крюк S0Т39R (2 шт), бандажную ленту C0Т37.2R (4 м) и скрепу C0Т36.2R (2 шт). Верхний и нижний бандаж выполнить в два витка. (см. Книгу 1.5).

	Стойка			Изгидающий	H ₁	H ₂	G	W ₁	W ₂	Линейная	
Tun опоры	Марка	L	Кол.	момент	111	112	u	**	***	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	М	стр.	
0АБк10(20)-1	CB95-3	9,5	3	3,0	6,85	5,8	2,2	3,5	3,35		
ОАБк10(20)-2	CB105-5	10,5	3	5,0	7,75	6,7	2,3	4,1	3,9	101	
ОАБк10(20)-3	CB110-5	11,0	3	5,0	8,25	7,2	2,3	4,3	4,1	121	
ПОАБк10(20)-4	CB110-5	11,0	3	5,0	8,25	7,2	2,3	4,3	4,1		

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОТВЕТВИТЕЛЬНЫЕ ОПОРЫ Стр. ΟΑΕκ10(20)-1, ΟΑΕκ10(20)-2, ΟΑΕκ10(20)-3, ΠΟΑΕκ10(20)-4 121 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCES TM) 22 21 20 19 13 30 9 7 19 14 16 26 32 444 35 36 39 39 40 17 23 29 2 El'0 41 07'0 08'0 58'0

57'0

0,25


52'0

SS'0

0,25

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОТВЕТВИТЕЛЬНЫЕ ОПОРЫ ОАБк10(20)-1, ОАБк10(20)-2, ОАБк10(20)-3, ПОАБк10(20)-4

ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCESTM)

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОТВЕТВИТЕЛЬНЫЕ ОПОРЫ ΟΑΕκ10(20)-1, ΟΑΕκ10(20)-2, ΟΑΕκ10(20)-3, ΠΟΑΕκ10(20)-4 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCESTM) 4 9 (dp 0 0 #||#|| #||#

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОТВЕТВИТЕЛЬНЫЕ ОПОРЫ Стр. ΟΑΕκ10(20)-1, ΟΑΕκ10(20)-2, ΟΑΕκ10(20)-3, ΠΟΑΕκ10(20)-4 СПЕЦИФИКАЦИЯ (EXCEL, FXCEL, AXCESTM)

пр. Примечание
91
91
91
15
09
97
96
99
07
98
29 Для кронштейна ОГиЗ
Для кронштейна ОГиЗ
Для кронштейна КМи-3
Для кронштейна КМи-3
16м – для стоек СВ105 17м – для стоек СВ110
08
02
23
08
14
18
21 Выбирается по марке и сечению кабеля
23
27 Для кронштейна КМи-3
33
31
31
94
94
29
08
30
31
31

ОДНОЦЕПНЫЕ АНКЕРНЫЕ ОТВЕТВИТЕЛЬНЫЕ ОПОРЫ Стр. ΟΑΕκ10(20)-1, ΟΑΕκ10(20)-2, ΟΑΕκ10(20)-3, ΠΟΑΕκ10(20)-4

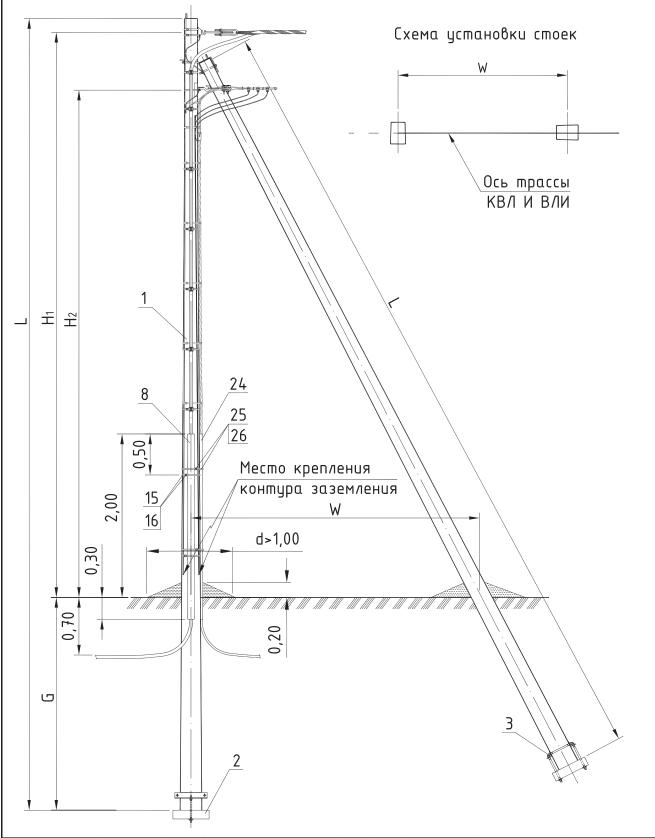
125

СПЕЦИФИКАЦИЯ (Е	EXCEL, FXCEL.	, AXCES TM)
-----------------	---------------	-------------------------

Поз.	Наименование	Марка	Ε∂.	Кол-	Стр.	Примечание
1103.	Hadrienoodiide	Парка	ШЗМ .	во	cilip.	riparie lande
37	Кабельный наконечник	LUG6-50/8LVTIN	шm.	1	233	
38	Болт ГОСТ 7798-70	M8	шm.	1		
39	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	2		
40	Γαῦκα ΓΟСΤ5915-70	M8	шm.	1		
	Арматура магистр	али ВЛИ 0,4 кВ				
41	Зажим натяжной	S0118.1201S	шm.	3	226	
42	Зажим прокалывающий	SLIP22.1	шm.	5	234	
43	Зажим прокалывающий	SLIP22.127	шm.	2	234	
44	Зажим плашечный	SL37.2	шm.	1	233	
45	Провод изолированный*****	СИП−4	М	1,0		

Примечание:

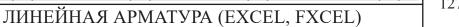
- * Стяжка SH702R применяется для стоек СВ95 и СВ110, стяжка SH703R для стоек СВ105.
- ** Xомут X42 для стоек CB95 и CB110, хомут X3 для стоек CB105.
- *** Кронштейн Ч4 для стоек СВ95 и СВ110, кронштейн Ч1 для стоек СВ105.
- *** Верхний и нижний бандаж выполняется в два витка.
- ***** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

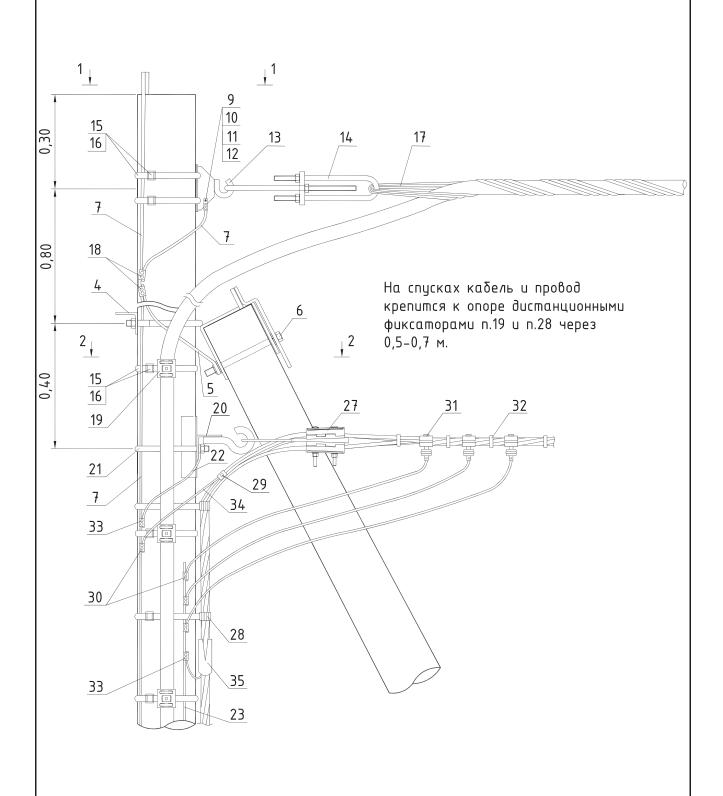

В случае применения стальной полосы в качестве заземляющего спуска на опоре, оконцевание муфт с кабельными наконечниками крепяттся к полосе с помощью крепежных элементов (болт М8 (М10), шайδа Двн.рез=8,4мм, гайка М8). Отверстия на полосе высверливаются по месту.

ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

126

Стр.

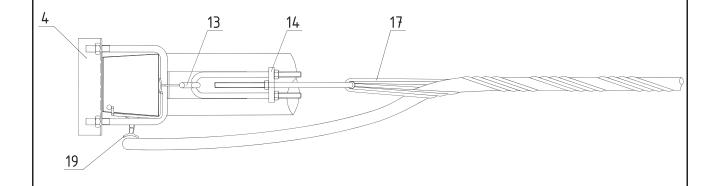



	Стойка			Изгидающий	ш		G	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	H ₁	H ₂	u	W	арматура	Примечание
	Марка	М	шm.	mc.m	М	М	М	М	стр.	
КАБк10(20)-1	CB95-3	9,5	2	3,0	7,0	5,8	2,2	3,5		
КАБк10(20)-2	CB105-5	10,5	2	5,0	7,7	6,5	2,5	4,1	127	
КАБк10(20)-3	CB110-5	11,0	2	5,0	8,2	7,0	2,5	4,3	127	
ПКАБк10(20)-4	CB110-5	11,0	2	5,0	8,2	7,0	2,5	4,3		

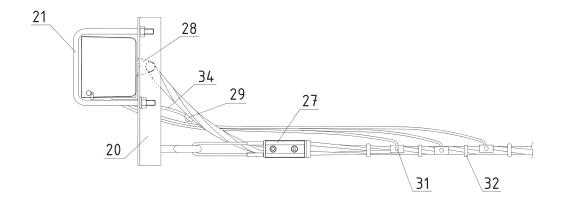
ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

127

Стр.


ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL)


128

Стр.

1–1

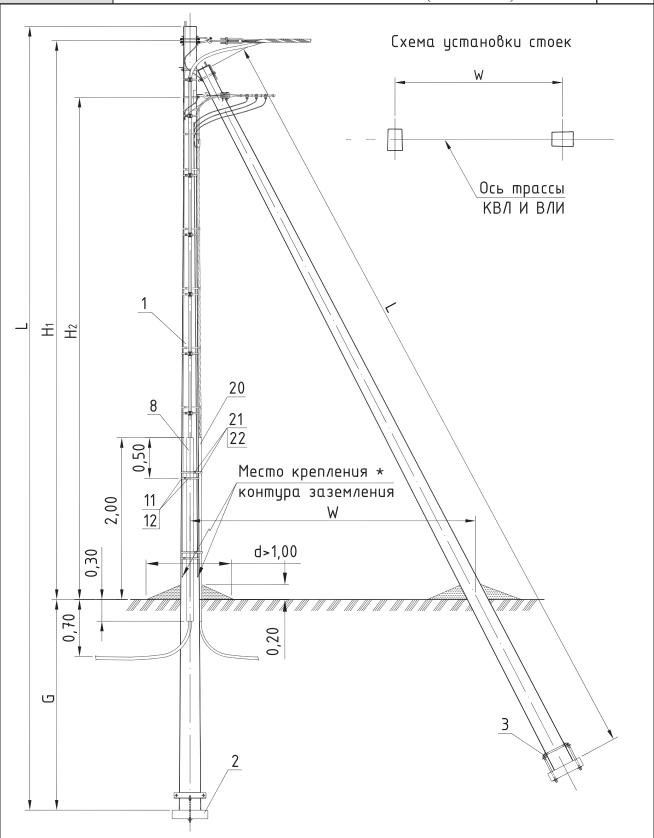
2-2

ЗНЕОВИК

ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

Стр.

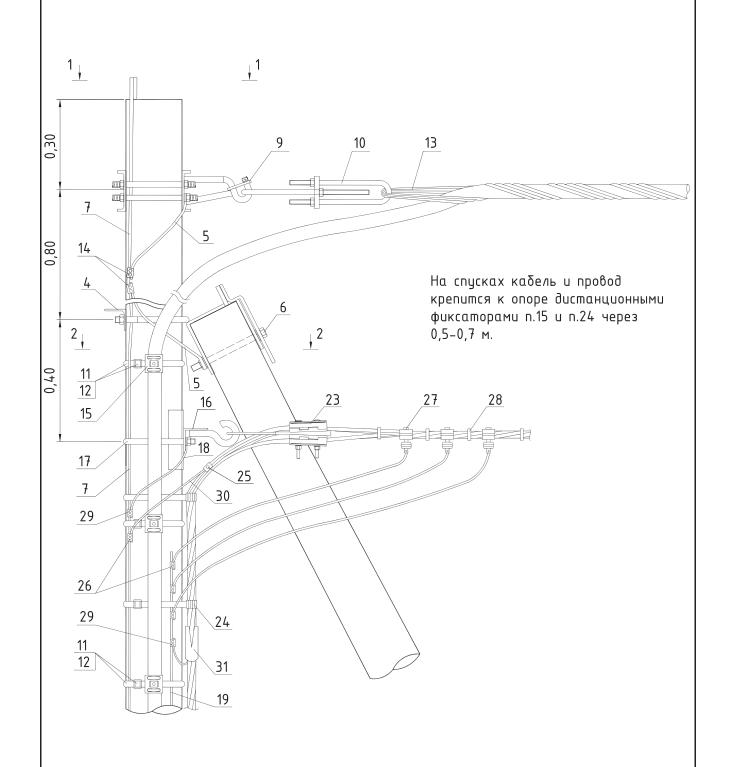
129


СПЕЦИФИКАЦИЯ (EXCEL, FXCEL)

		,	`			, <u> </u>
Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	изделия				
		CB95-3,				
1	Стойка железобетонная	(CB110-5) (CB105-5)	шm.	2	190	
2	Плита	П-3и	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка	SH702R (SH703R)	шm.	2	209	
4	Кронштейн	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	1	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления	B10	М	8,0		9,0м для стоек СВ110 8,5м для стоек СВ105
8	Ограждение Швеллер, ГОСТ 8278-83	100x80x3	М	2,3		
9	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	1	233	
10	Болт ГОСТ 7798-70	M8	шm.	1		
11	Шαῦδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	2		
12	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	1		
13	Крюк	SOT39R	шm.	1	230	
14	Ta <i>n</i> pen	S0155.1	шm.	1	214	
15	Ckpena	COT36.2R	шm.	10	231	
16	Лента бандажная	C0T37.2R	М	12,0	231	
	Арматура магистрали	КВЛ 10-20 кВ				
17	Спиральная вязка	PLP120 (PLP125)	шm.	1	218	
18	Зажим плашечный	SL37.2	шm.	2	233	
19	Дистанционный бандаж	S075.100	шm.	7	223	
''	Металлоконструкции		W 1111.	,	223	
20	Траверса	TM78a	шm.	1	194	
21	Хомут	X51 (X1)	шm.	1	207	
22	Заземляющий проводник	SH705R	шm.	1	208	
23	Проводник заземления	B10	M	7,0	200	
24	Ограждение Швеллер 100х80х3	D10	M	2,3		
25	Скрепа	C0T36.2R	um.	2,5	231	
26	Лента бандажная	COT30.2R			231	
20		L	М	4,8	۱۲۷	
27	Арматура магистрал			1	227	
27	Зажим натяжной	S0118.1201S S079.6	шm.	6	226	
28	Дистанционный бандаж	SU19.6 SLIP22.1	шm.		228	
30	Зажим прокалывающий	SLIP22.1 SLIP22.127	шm.	1	234	
31	Зажим прокалывающий Ограничитель перенапряжений	SE45.0 (SE46.0)	шm.	3	234	
32	Бандаж	PER15	шт. шт.	4	233	
33	Зажим плашечный	SL37.2		2	233	
34	Провод изолированный	СИП-4	ШМ. М	0,5	ردے	
	·				220	Выбирается по марке
35	Муфта концевая	STK.	шm.	1	238	и сечению кабеля

ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

Стр.

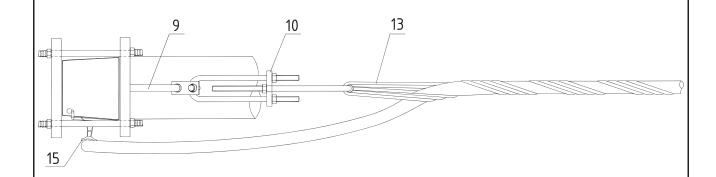

	Стойка			Изгидающий	ш	H	G	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	H ₁	112	u	W	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	стр.	
КАБк10(20)-1	CB95-3	9,5	2	3,0	7,0	5,8	2,2	3,5		
КАБк10(20)-2	CB105-5	10,5	2	5,0	7,7	6,5	2,5	4,1	121	
КАБк10(20)-3	CB110-5	11,0	2	5,0	8,2	7,0	2,5	4,3	131	
ПКАБк10(20)-4	CB110-5	11,0	2	5,0	8,2	7,0	2,5	4,3		

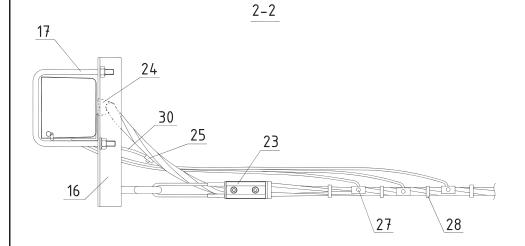
ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

ЛИНЕЙНАЯ АРМАТУРА (AXCESTM)

131

Стр.




ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM)

132

Стр.

1–1

SHEDBUK

ОДНОЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ КАБк10(20)-1, КАБк10(20)-2, КАБк10(20)-3, ПКАБк10(20)-4

Стр.

133

СПЕЦИФИКАЦИЯ (AXCESTM)

	Ed. Kon- c										
Поз.	Наименование	Марка	U3M.	во	Cmp.	Примечание					
	Железобетонные		ı								
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	2	190						
2	Плита	П–3и	шm.	2	215						
	Металлоконструкции	КВЛ 10-20 кВ									
3	Стяжка	SH702R (SH703R)	шm.	2	209						
4	Кронштейн	94 (91)	шm.	1	202						
5	Заземляющий проводник	SH705.1R	шm.	2	208						
6	Гайка ГОСТ 5915-70	M20	шm.	1							
7	Проводник заземления	B10	М	7,5		8,5м для стоек СВ110 8,0м для стоек СВ105					
8	Ограждение Швеллер 100х80х3, ГОСТ 8278-83		М	2,3							
9	Крюк	SOT142R	шm.	1	211						
10	Ta <i>n</i> pen	S0155.1	шm.	1	214						
11	Скрепа	COT36.2R	шm.	10	231						
12	Лента бандажная	COT37.2R	М	12,0	231						
	Арматура магистралі	. КВЛ 10−20 кВ									
13	Спиральная вязка	PLP180 (PLP200)	шm.	1	218						
14	Зажим плашечный	SL37.2	шm.	2	233						
15	Дистанционный бандаж	S075.100	шm.	7	223						
	Металлоконструкци	и ВЛИ 0,4 кВ	Į.								
16	Τραβερςα	TM78a	шm.	1	194						
17	Хомут	X51 (X1)	шm.	1	207						
18	Заземляющий проводник	SH705R	шm.	1	208						
19	Проводник заземления	B10	М	7,0							
20	Ограждение Швеллер 100х80х3, ГОСТ 8278-83		М	2,3							
21	Скрепа	COT36.2R	шm.	2	231						
22	Лента бандажная	COT37.2R	М	4,8	231						
	Арматура магистрал	nu ВЛИ 0,4 кВ									
23	Зажим натяжной	S0118.1201S	шm.	1	226						
24	Дистанционный бандаж	S079.6	шm.	6	228						
25	Зажим прокалывающий	SLIP22.1	шm.	1	234						
26	Зажим прокалывающий	SLIP22.127	шm.	4	234						
27	Ограничитель перенапряжений	SE45.□ (SE46.□)	шm.	3	235						
28	Бандаж	PER15	шm.	4	231						
29	Зажим плашечный	SL37.2	шm.	2	233						
30	Провод изолированный	СИП-4	М	0,5							
31	Муфта концевая	STK.	шm.	1	238	Выбирается по марке и сечению кабеля					
				,							

знервик	ДЛЯ ЗАМЕТОК	Стр.

135

Часть VII

КОНСТРУКЦИИ ДВУХЦЕПНЫХ ЖЕЛЕЗОБЕТОННЫХ ОПОР ВЛ 10-20 кВ С ПОДВЕСКОЙ УНИВЕРСАЛЬНОГО КАБЕЛЯ (EXCEL, FXCEL, AXCESTM) И С СОВМЕСТНОЙ ПОДВЕСКОЙ САМОНЕСУЩИХ ИЗОЛИРОВАННЫХ ПРОВОДОВ (СИП-4) ДВУХЦЕПНОЙ ВЛ 0,4 кВ

знервик

ДВУХЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ <u>ПБк10(20)-5, ППБк10(20)-6, ППБк10(20)-7</u>

Стр.

136

СХЕМА РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCES TM)

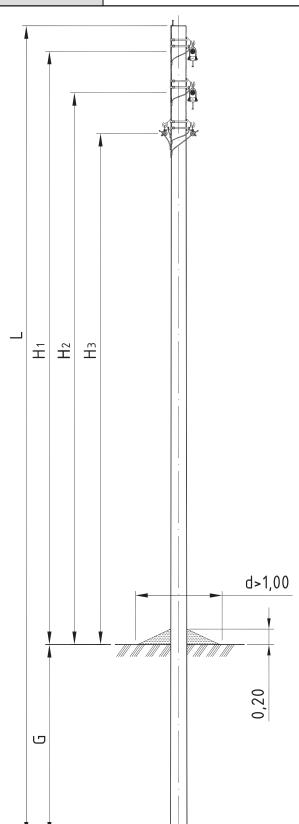
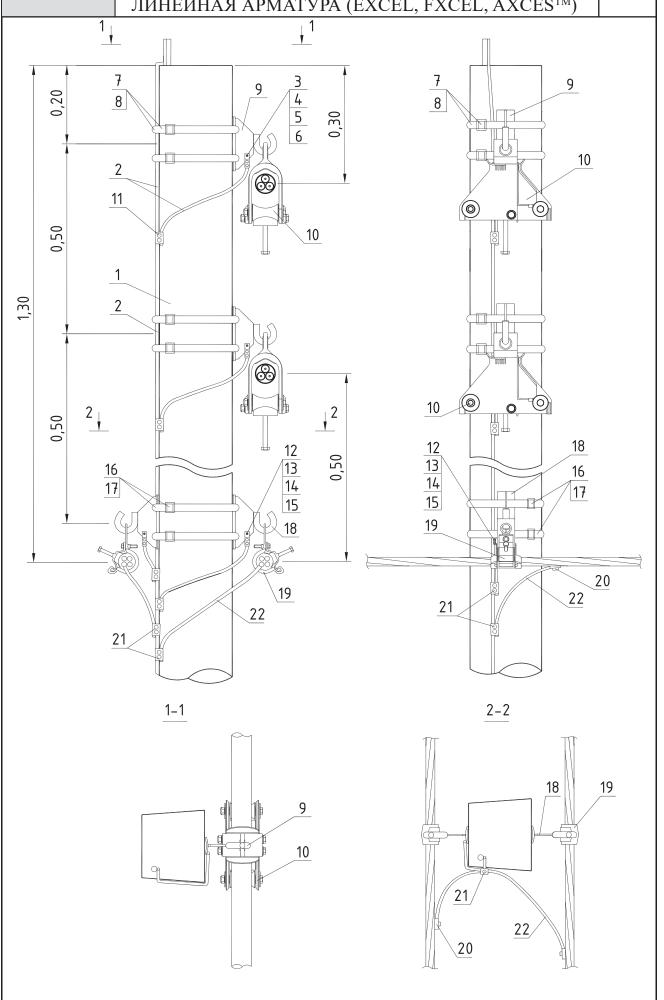


Схема установки стойки


	Стойка			Изгидающий	ш	ш	ш	G	Линейная		
Tun опоры	Марка	L	Кол.	момент	H ₁	H ₂	H ₃	u	арматура	Примечание	
		М	шm.	MC.M	М	М	М	М	стр.		
ПБк10(20)-5	CB105-5	10,5	1	5,0	7,7	7,2	6,7	2,5			
ПБк10(20)-6	CB110-5	11,0	1	5,0	8,2	7,7	7,2	2,5	137		
ППБк10(20)-7	CB110-5	11,0	1	5,0	8,2	7,7	7,2	2,5			

ДВУХЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ ПБк10(20)-5, ППБк10(20)-6, ППБк10(20)-7

Стр.

137

ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL, AXCESTM)

знервик

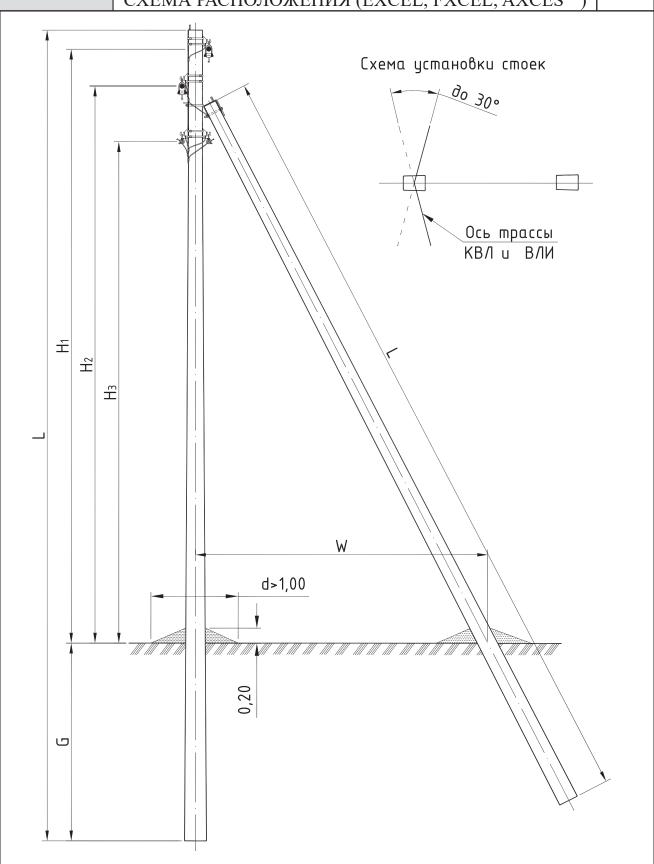
ДВУХЦЕПНЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ **ПБк10(20)-5, ППБк10(20)-6, ППБк10(20)-7**

Стр.

138

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL, AXCESTM)

	·					
Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	изделия				
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	1	191	
	Металлоконструкции	КВЛ 10-20 кВ				
2	Проводник заземления ГОСТ2590-71	B10	М	3,0		
3	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	2	233	
4	Болт ГОСТ 7798-70	M8	шm.	2		
5	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	4		
6	Гайка ГОСТ 5915-70	M8	шm.	2		
7	Скрепа	COT36.2R	шm.	4	231	
8	Лента бондажная	COT37.2R	М	4,0	231	
9	Крюк*	S0T29.10R (S0T39R)	шm.	2	230	
	Арматура магистрали	I КВЛ 10−20 кВ	3			
10	Зажим поддерживающий	S099 (S0150)	шm.	2	217	S099 - для EXCEL u FXCEL S0150 - для AXCES™
11	Зажим плашечный	SL37.2	шm.	2	233	
	Металлоконструкци	⊔ ВЛИ 0,4 кВ				
12	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	2	233	
13	Болт ГОСТ 7798-70	M8	шm.	2		
14	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	4		
15	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	2		
16	Скрепа	COT36.2R	шm.	4	231	
17	Лента бандажная	COT37.2R	М	4,0	231	
18	Крюк	S0T29.10R	шm.	2	230	
	Арматура магистра/					
19	Зажим поддерживающий	S0130	шm.	2	217	
20	Зажим прокалывающий	SLIP22.1	шm.	2	234	
21	Зажим прокалывающий	SLIP22.127	шm.	4	234	
22	Провод изолированный**	СИП-4	М	2,0		

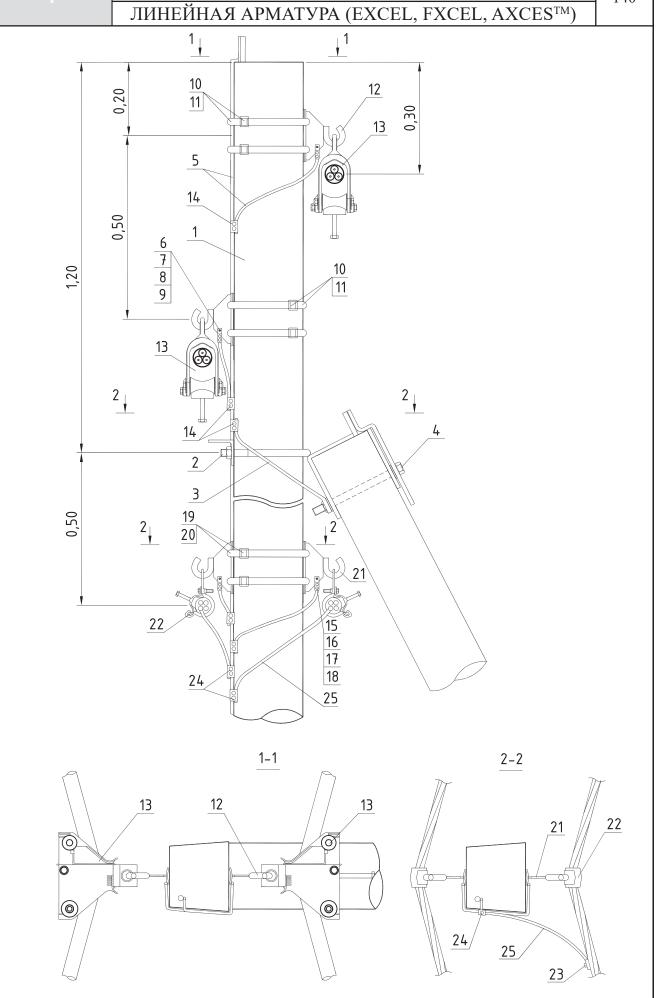

Примечание:

- * При подвеске универсальных кабелей EXCEL и FXCEL применять крюк S0T29.10R а при подвеске универсального кабеля $AXCES^{TM}$ использовать крюк S0T39R. Верхний и нижний бандаж выполняется в два витка.
- ** Сечение изолированного провода СИП-4 определяется в соответствии с n.2.4.48 и n.1.7.126 ПУЭ 7 издания [1].

ДВУХЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ УПБк10(20)-5, УПБк10(20)-6, ПУПБк10(20)-7

139

CXEMA РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCESTM)



	Стойка			изгидающий		H		G	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	H ₁	П2	H ₃	u	VV	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	М	стр.	
УПБк10(20)−5	CB105-5	10,5	2	5,0	7,7	7,2	6,3	2,5	4,1		
УПБк10(20)−6	CB110-5	11,0	2	5,0	8,2	7,7	6,8	2,5	4,3	140	
ПУПБк10(20)-7	CB110-5	11,0	2	5,0	8,2	7,7	6,8	2,5	4,3		

ВНЕРВИК <u>УПБк1</u>

ДВУХЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ УПБк10(20)-5, УПБк10(20)-6, ПУПБк10(20)-7

Стр.

ДВУХЦЕПНЫЕ УГЛОВЫЕ ПРОМЕЖУТОЧНЫЕ ОПОРЫ Стр. УПБк10(20)-5, УПБк10(20)-6, ПУПБк10(20)-7

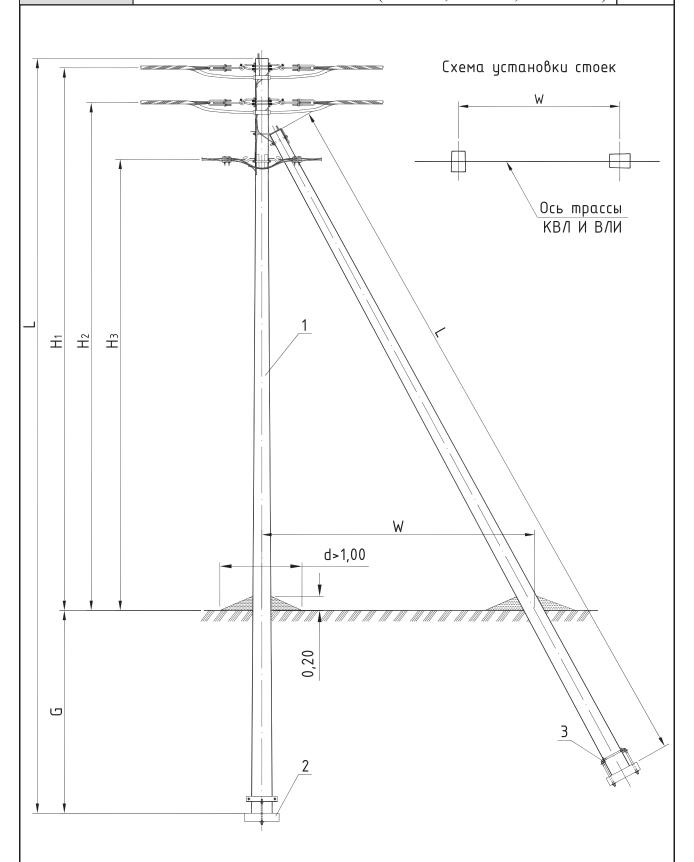
141

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL, AXCES TM)

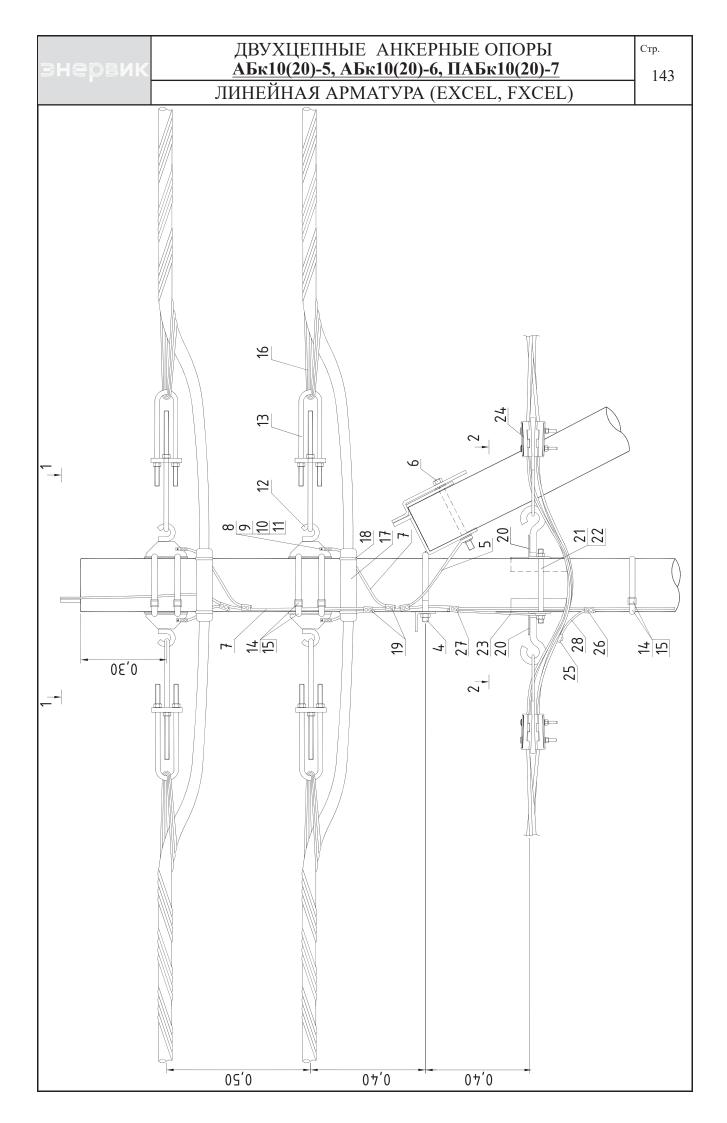
Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные					
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	191	
	Металлоконструкции	КВ/Л 10-20 кВ				
2	Кронштейн*	94 (91)	шm.	1	202	
3	Заземляющий проводник	SH705.1R	шm.	1	208	
4	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
5	Проводник заземления ГОСТ2590-71	B10	М	3,0		
6	Кабельный наконечник	LUG6- 50/8LVTIN	шm.	2	233	
7	Болт ГОСТ 7798-70	M8	шm.	2		
8	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	4		
9	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	2		
10	Скрепа	COT36.2R	шm.	4	231	
11	Лента бандажная	COT37.2R	М	8,0	231	
12	Крюк**	SOT39R	шm.	2	230	
	Арматура магистрал	. КВЛ 10−20 кВ	3			
13	Зажим поддерживающий	S099 (S0150)	шm.	2	217	S099 - для EXCEL u FXCEI S0150 - для AXCES™
14	Зажим плашечный	SL37.2	шm.	3	233	
	Металлоконструкци	и ВЛИ 0,4 кВ				
15	Кабельный наконечник	LUG6-50/ LVTIN	шm.	2	233	
16	Болт ГОСТ 7798-70	M8	шm.	2		
17	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	4		
18	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	2		
19	Скрепа	COT36.2R	шm.	4	231	
20	Лента бандажная	COT37.2R	шm.	4,0	231	
21	Крюк***	S0T29.10R	шm.	2	230	
	Арматура магистра	ли ВЛИ 0,4 кВ				
22	Зажим поддерживающий	S0130	шm.	2	217	
23	Зажим прокалывающий	SLIP22.1	шm.	2	234	
24	Зажим прокалывающий	SLIP22.127	шm.	4	234	
25	Провод изолированный	СИП-4	М	2,0		

Примечание:

- * Кронштейн У4 для стоек СВ110, кронштейн У1 для стоек СВ105.
- ** Верхний и нижний бандаж выполняется в два витка.
- *** Верхний и нижний бандаж выполняется в два витка.


знервик

ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-5, АБк10(20)-6, ПАБк10(20)-7**


Стр.

142

СХЕМА РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCES TM)

	Стойка			Изгибающий	ш	ш	ш	G	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	H ₁	H ₂	H ₃	. "	**	арматура	Примечание
	Пирки	М	шm.	mc.m	М	М	М	М	М	стр.	
АБк10(20)-5	CB105-5	10,5	2	5,0	7,9	7,4	6,6	2,3	4,1		
АБк10(20)-6	CB110-5	11,0	2	5,0	8,4	7,9	7,1	2,3	4,3	143	
ПАБк10(20)-7	CB110-5	11,0	2	5,0	8,4	7,9	7,1	2,3	4,3]	

ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ Стр. ΑБκ10(20)-5, ΑБκ10(20)-6, ΠΑБκ10(20)-7 144 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 16 \Box 12 21 22 -2-2 T

энервик

ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-5, АБк10(20)-6, ПАБк10(20)-7**

Стр.

145

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонн	ые изделия				
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	191	
2	Ππυπα	П–3и	шm.	2	215	
	Металлоконструкц	ии КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	1	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления ГОСТ2590-71	B10	М	10,5		10 м для стоек СВ105
8	Кабельный наконечник	LUG6-50/8LVTIN	шm.	4	233	
9	Болт ГОСТ 7798-70	M8	шm.	4		
10	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	8		
11	Гайка ГОСТ 5915-70	M8	шm.	4		
12	Крюк***	SOT39R	шm.	4	230	
13	Tanpen	S0155.1	шm.	4	214	
14	Скрепа	COT36.2R	шm.	15	231	
15	Лента бандажная	COT37.2R	М	19,0	231	
	Арматура магистро	ıли КВЛ 10-20 кВ				
16	Спиральная вязка	PLP120 (PLP125) (PLP130)	шm.	4	218	
17	Защитный кожух****		шm.	2	222	
18	Бандаж	PER15.387	шm.	4	231	
19	Зажим плашечный	SL37.2	шm.	5	233	
	Металлоконструк	ции ВЛИ 0,4 кВ				
20	Траверса	ΤΜ78δ	шm.	2	195	
21	Болт	SOT4.8R (SOT4.9R)	шm.	2	229	
22	Γαῦκα ΓΟСΤ 5915-70	M16	шm.	2		
23	Заземляющий проводник	SH705R	шm.	2	208	
	Арматура магистр	рали ВЛИ 0,4 кВ				
24	Зажим натяжной	S0118.1201S	шm.	4	226	
25	Зажим прокалывающий	SLIP22.1	шm.	2	234	
26	Зажим прокалывающий	SLIP22.127	шm.	2	234	
27	Зажим плашечный	SL37.2	шm.	2	233	
28	Провод изолированный*****	СИП-4	М	1,0		

- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн Ч4 для стоек СВ110, кронштейн Ч1 для стоек СВ105.
- *** Верхний и нижний бандаж выполняется в два витка.
- **** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- ***** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-5, АБк10(20)-6, ПАБк10(20)-7** Стр. 146 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 9 ∞ 2 13 **4 1 2 3**6 2 TT 22 22 14 15 19 | 19 | 19 th (th) 9 __ 2 0٤'0 05'0 07'0 07'0

ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-5, АБк10(20)-6, ПАБк10(20)-7** Стр. 147 ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) 20 -74 13 2-2 Ħ Ħ 16 ∞ 9

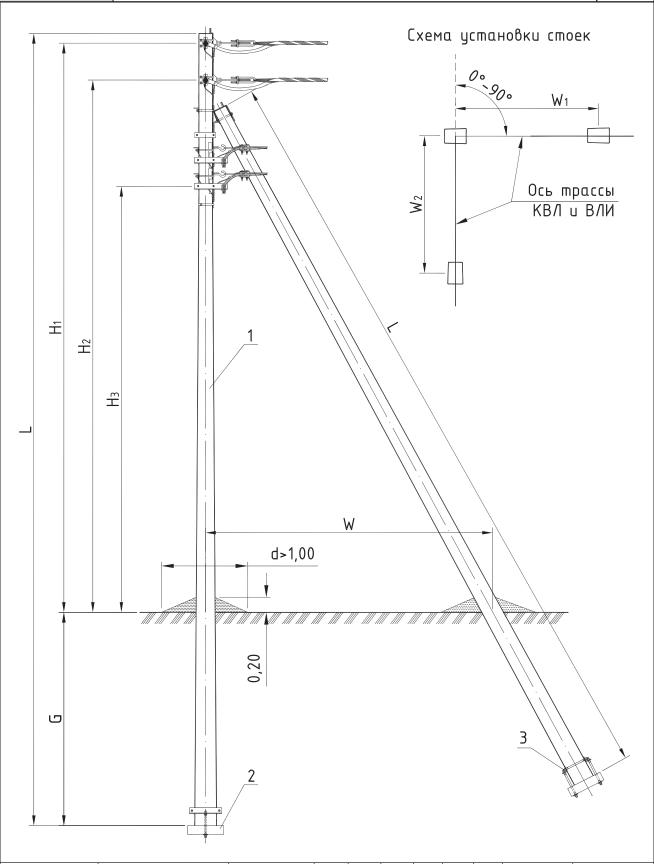
ДВУХЦЕПНЫЕ АНКЕРНЫЕ ОПОРЫ **АБк10(20)-5, АБк10(20)-6, ПАБк10(20)-7**

Стр.

148

СПЕЦИФИКАЦИЯ (AXCESTM)

Поз.	Наименование	Марка	E∂. uзм.	Кол- во	Стр.	Примечание
	Железобетонны	ые изделия				
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	191	
2	Плита	П-3и	шm.	2	215	
	Металлоконструкци	и КВЛ 10−20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	3	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления ГОСТ2590-71	B10	М	8,5		8,0 м для стоек СВ105
8	Крюк	S0T142.2R	шm.	2	212	
9	Ταπρen	S0155.1	шm.	4	214	
	Арматура магистра					
10	Спиральная вязка	PLP180 (PLP200)	шm.	4	218	
11	Защитный кожух***		шm.	2	222	
12	Бандаж	PER15.387	шm.	4	231	
13	Зажим плашечный	SL37.2	шm.	3	233	
14	Скрепа	COT36.2R	шm.	11	231	
15	Бандажная лента	COT37.2R	М	11,0	231	
	Металлоконструки	ции ВЛИ 0,4 кВ				
16	Траверса	ΤΜ78δ	шm.	2	195	
17	Болт	SOT4.8R (SOT4.9R)	шm.	2	229	
18	Γαῦκα ΓΟСΤ 5915-70	M16	шm.	2		
19	Заземляющий проводник	SH705R	шm.	2	208	
	Арматура магистр	али ВЛИ 0,4 кВ				
20	Зажим натяжной	S0118.1201S	шm.	4	226	
21	Зажим прокалывающий	SLIP22.1	шm.	2	234	
22	Зажим прокалывающий	SLIP22.127	шm.	2	234	
23	Зажим плашечный	SL37.2	шm.	2	233	
24	Провод изолированный****	СИП-4	М	1,0		


- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн Ч4 для стоек СВ110, кронштейн Ч1 для стоек СВ105.
- *** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- **** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ **УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7**

Стр.

149

CXEMA РАСПОЛОЖЕНИЯ (EXCEL, FXCEL, AXCESTM)

	Сп	Стойка		Изгидающий	H ₁	H ₂	Нз	G	W ₁	W ₂	Линейная	
Tun опоры	Марка	L	Кол.	момент	1111	112	113	u	VV 1	VV Z	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	М	М	стр.	
ЧАБк10(20) −5	CB105-5	10,5	3	5,0	7,9	7,4	6,0	2,3	4,1	3,9		
ЧАБк10(20)−6	CB110-5	11,0	3	5,0	8,4	7,9	6,5	2,3	4,3	4,1	150	
ПУАБк10(20)-7	CB110-5	11,0	3	5,0	8,4	7,9	6,5	2,3	4,3	4,1		

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ Стр. УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7 ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 1___ ___1 0,30 9 10 11 0,50 0,40 19 🕾 0,30 0,20 F 0,14 0,22 -Œ H 0,14 15

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ <u>УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7</u> Стр. ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 1–1 2-2

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ **УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7**

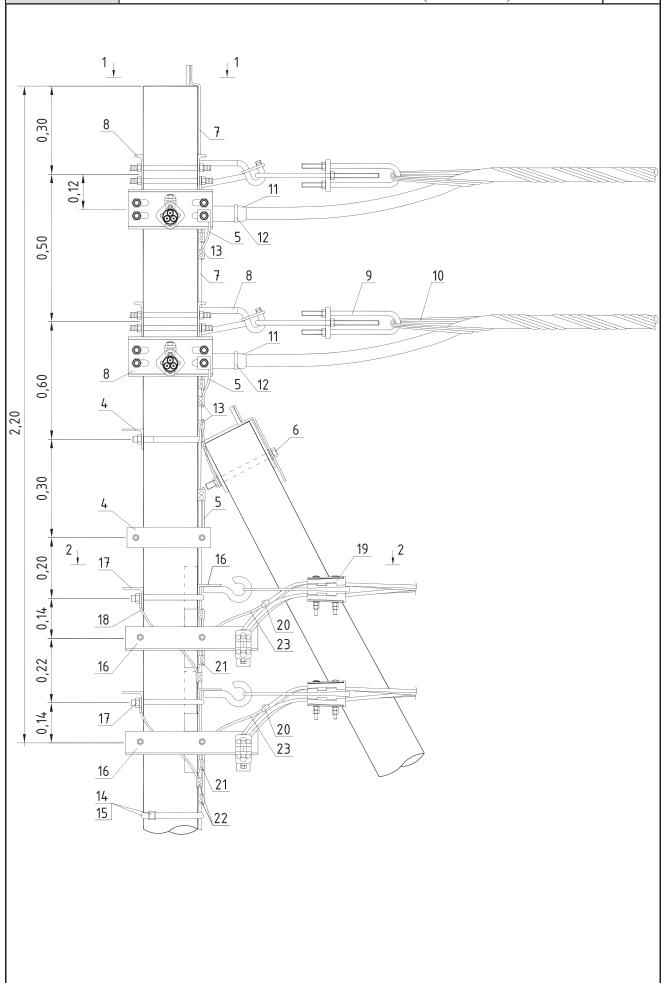
Стр.

152

		M	E∂.	Кол-		<u> </u>
Поз.	Наименование	Марка	ШЗМ .	во	Cmp.	Примечание
	Железобетонны	ые изделия				
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	3	191	
2	Плита	П-3и	шm.	3	215	
	Металлоконструкци	и KB/I 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	3	209	
4	Кронштейн**	94 (91)	шm.	2	202	
5	Заземляющий проводник	SH705.1R	шm.	2	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	2		
7	Проводник заземления	B10	М	10,5		10 м для стоек СВ105
8	Кабельный наконечник	LUG6-50/8LVTIN	шm.	4	233	
9	Болт ГОСТ 7798-70	M8	шm.	4		
10	Шαūδα ΓΟCT 18123-82	Dвн.рез=8,4мм	шm.	8		
11	Γαῦκα ΓΟСΤ 5915-70	M8	шm.	4		
12	Крюк***	SOT39R	шm.	4	230	
13	Талреп	S0155.1	шm.	4	214	
	Арматура магистра	ли КВЛ 10-20 кВ				
14	Скрепа	COT36.2R	шm.	15	231	
15	Лента бандажная	COT37.2R	М	19,0	231	
16	Спиральная вязка	PLP120 (PLP125, PLP130)	шm.	4	218	
17	Защитный кожух****		шm.	2	222	
18	Бандаж	PER15.387	шm.	4	231	
19	Зажим плашечный	SL37.2	шm.	6	233	
	Металлоконструки	ии ВЛИ 0,4 кВ				
20	Траверса	TM78A	шm.	4	194	
21	Хомут****	X51 (X1)	шm.	4	207	
22	Заземляющий проводник	SH705R	шm.	4	208	
	Арматура магистр					
23	Зажим натяжной	S0118.1201S	шm.	4	226	
24	Зажим прокалывающий	SLIP22.1	шm.	2	234	
25	Зажим прокалывающий	SLIP22.127	шm.	2	234	
26	Зажим плашечный	SL37.2	шm.	4	233	
27	Провод изолированный*****	СИП-4	М	1,0		

Примечание:

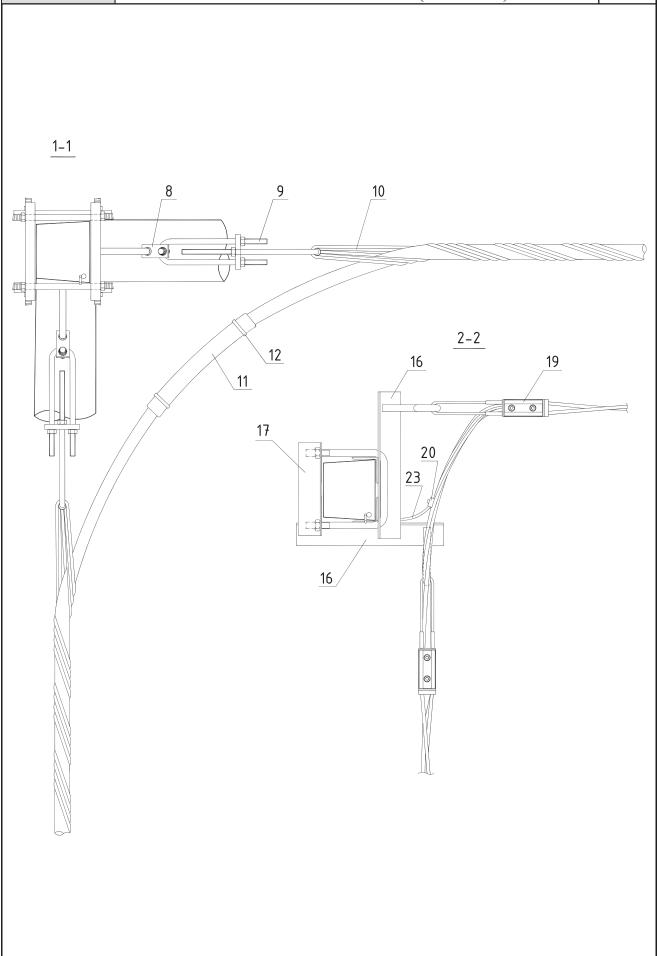
- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ110, кронштейн У1 для стоек СВ105.
- *** Верхний и нижний бандаж выполняется в два витка.
- **** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- **** Хомут X51 для стоек СВ110 a хомут X1 для стоек СВ105.
- ***** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].


При углах поворота трассы ВЛИ 0,4 кВ (СИП-4) до 60° С позиции 20 и 21 (траверса ТМ78А и хомут X51 (X1)), можно заменить на крюк SOT39R (4 шт), бандажную ленту СОТ37.2R (8 м) и скрепу СОТ36.2R (4 шт). Верхний и нижний бандаж выполняется в два витка (см. Книгу 1.5).

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7

ЛИНЕЙНАЯ АРМАТУРА (AXCESTM)

153


Стр.

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7

ЛИНЕЙНАЯ АРМАТУРА (АХСЕЅ^{ТМ})

Стр.

энервик

ДВУХЦЕПНЫЕ УГЛОВЫЕ АНКЕРЫЕ ОПОРЫ **УАБк10(20)-5, УАБк10(20)-6, ПУАБк10(20)-7**

Стр.

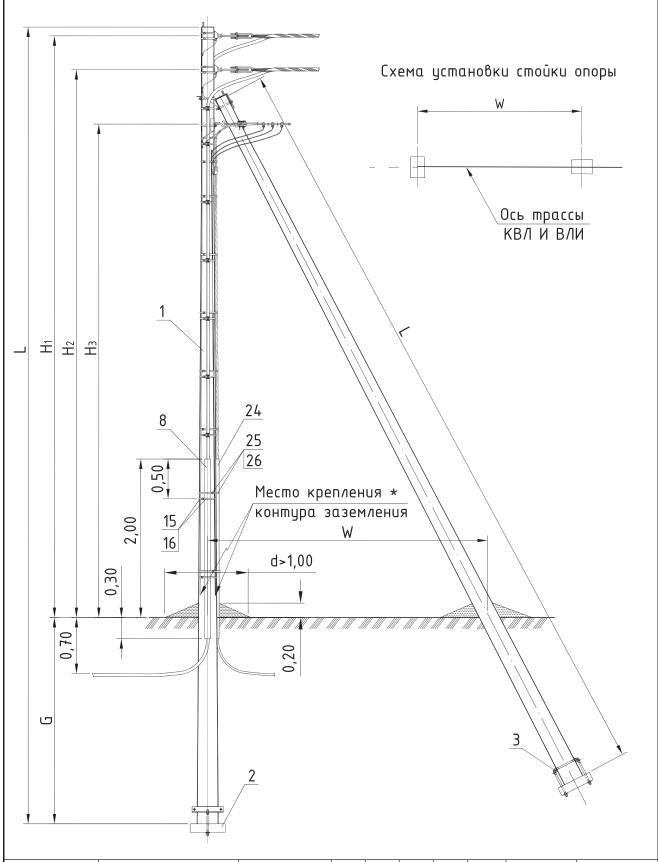
155

СПЕЦИФИКАЦИЯ (AXCESTM)

Поз.	Наименование	Марка	Ед. изм.	Ко <i>л</i> - во	Cmp.	Примечание
	Железобетонны	ые изделия	,			
1	Стойка железобетонная	CB110-5 (CB105-5)	wm.	3	191	
2	Плита	П–Зи	шm.	3	215	
	Металлоконструкци	іц КВЛ 10−35 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	3	209	
4	Кронштейн**	94 (91)	шm.	2	202	
5	Заземляющий проводник	SH705.1R	шm.	6	208	
6	Гайка ГОСТ 5915-70	M20	шm.	2		
7	Проводник заземления	B10	М	8,5		8,0 м-для стоек СВ105
8	Крюк	S0T142R	шm.	4	211	
9	Ταπρen	S0155.1	шm.	4	214	
	Арматура магистра	ли КВЛ 10-35 кВ				
10	Спиральная вязка	PLP180 (PLP200)	шm.	4	218	
11	Защитный кожух***		шm.	2	222	
12	Бандаж	PER15.387	шm.	4	231	
13	Зажим плашечный	SL37.2	шm.	6	228	
14	Скрепа	COT36.2R	шm.	11	231	
15	Бандажная лента	COT37.2R	М	11,0	231	
	Металлоконструкс	ции ВЛИ 0,4 кВ				
16	Траверса	TM78A	шm.	4	194	
17	Хомут***	X51 (X1)	шm.	4	207	
18	Заземляющий проводник	SH705R	шm.	4	208	
	Арматура магистр	али ВЛИ 0,4 кВ				
19	Зажим натяжной	S0118.1201S	шm.	4	226	
20	Зажим прокалывающий	SLIP22.1	шm.	2	234	
21	Зажим прокалывающий	SLIP22.127	шm.	2	234	
22	Зажим плашечный	SL37.2	шm.	4	228	
23	Провод изолированный*****	СИП−4	М	1,0		

Примечание:

- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн Ч4 для стоек СВ110, кронштейн Ч1 для стоек СВ105.
- *** Защитный кожух применяется для дополнительной механической защиты кабеля, не является обязательным конструктивным элементом опоры.
- **** Хомут X51 для стоек СВ110 а X1 для стоек СВ105.
- ***** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].


При углах поворота трассы ВЛИ 0,4 кВ (СИП-4) до 60° С позиции 16 и 17 (траверса ТМ78А и хомут X51 (X1)), можно заменить на крюк SOT39R (4 шт), бандажную ленту COT37.2R (8 м) и скрепу COT36.2R (4 шт). Верхний и нижний бандаж выполняется в два витка (см. Книгу 1.5).

энервик

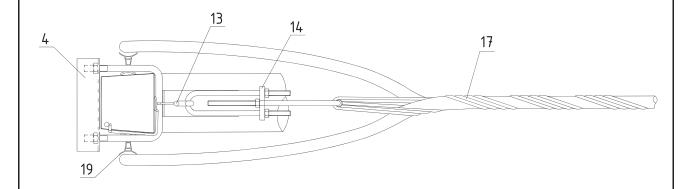
ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**

Стр.

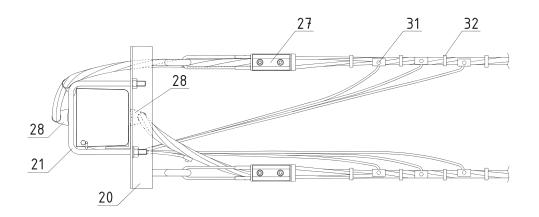
СХЕМА РАСПОЛОЖЕНИЯ (EXCEL, FXCEL)

	Стойка			Изѕибающий	Н.	H	ш	-G	W	Линейная	
Tun опоры	Марка	L	Кол.	момент	п ₁	112	H_3	u	VV	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	М	cmp.	
КАБк10(20)-5	CB105-5	10,5	1	5,0	7,7	7,2	6,4	2,5	4,1		
КАБк10(20)-6	CB110-5	11,0	1	5,0	8,2	7,7	6,9	2,5	4,3	157	
ПКАБк10(20)-7	CB110-5	11,0	1	5,0	8,2	7,7	6,9	2,5	4,3		

ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7** Стр. ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL) 1____ ___1 10 06'0 05'0 0,40 На спусках кабель и провод крепится к опоре дистанционными фиксаторами п.19 и п.28 через , 2 0,5-0,7 м. 07'0


ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**

Стр.


158

ЛИНЕЙНАЯ APMATYPA (EXCEL, FXCEL)

1–1

2-2

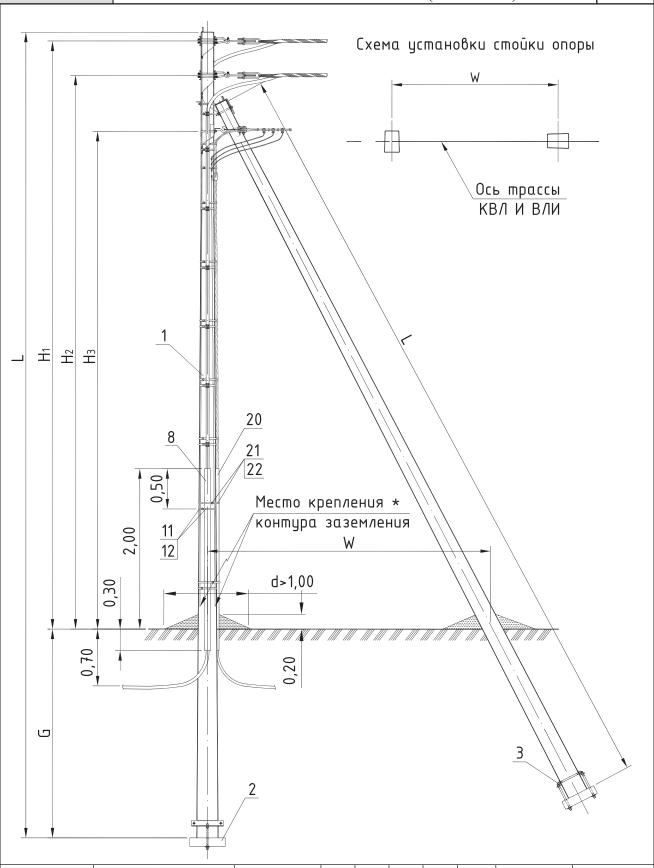
ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**

Стр.

159

СПЕЦИФИКАЦИЯ (EXCEL, FXCEL)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные из	вделия				
1	Стойка железобетонная	CB110-5 (CB105)-5	шm.	2	191	
2	Плита	П–3и	шm.	2	215	
	Металлоконструкции KE	3/1 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	1	208	
6	Гайка ГОСТ 5915-70	M20	шm.	1		
7	Проводник заземления	B10	М	10,5		10 м для стоек СВ105
8	Ограждение Швеллер, ГОСТ8278-83	100x80x3	М	2x2,3		
9	Кабельный наконечник	LUG6-50/8LVTIN	шm.	2	233	
10	Болт ГОСТ 7798-70	M8	шm.	2		
11	Шαūδα ΓΟCT 18123-82	D _{6н.рез} =8,4мм	шm.	4		
12	Гайка ГОСТ 5915-70	M8	шm.	2		
13	Крюк***	SOT39R	шm.	2	230	
14	Ta <i>n</i> pen	S0155.1	шm.	2	214	
15	Ckpena	COT36.2R	шm.	10	231	
16	Лента бандажная	COT37.2R	М	12,0	231	
	Арматура магистрали К	ВЛ 10-20 кВ				
17	Спиральная вязка	PLP120 (PLP125)	шm.	2	218	
18	Зажим плашечный	SL37.2	шm.	3	228	
19	Дистанционный бандаж	S075.100	шm.	14	223	
	Металлоконструкции В	5/ЛИ 0,4 кB				
20	Траверса	ΤΜ78δ	шm.	1	195	
21	Хомут	X51 (X1)	шm.	1	207	
22	Заземляющий проводник	SH705R	шm.	1	208	
23	Проводник заземления	B10	М	7,5		7 м для стоек СВ105
24	Ограждение Швеллер 100x80x3		М	2x2,3		
25	Скрепа	COT36.2R	шm.	4	231	
26	Лента бандажная	COT37.2R	М	5,6	231	
	Арматура магистрали	ВЛИ 0,4 кВ				
27	Зажим натяжной	S0118.1201S	шm.	2	226	
28	Дистанционный бандаж	S079.6	шm.	12	228	
29	Зажим прокалывающий	SLIP22.1	шm.	2	234	
30	Зажим прокалывающий	SLIP22.127	шm.	8	234	
31	Ограничитель перенапряжений	SE45 (SE46)	шm.	6	235	
32	Бандаж	PER15	шm.	8	231	
33	Зажим плашечный	SL37.2	шm.	2	228	
34	Провод изолированный	СИП-4	М	1,0		
35	Муфта концевая	STK.	шm.	2	238	Выбирается по марке и сечению кабеля


- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн 94 для стоек СВ110, кронштейн 91 для стоек СВ105.
- *** Bерхний и нижний бандаж выполняется в два витка.

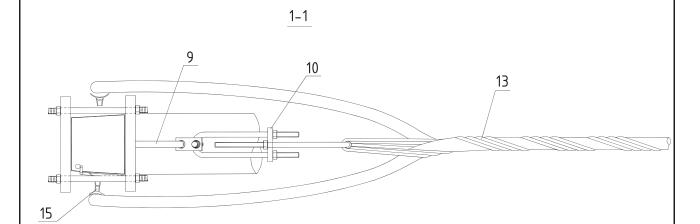
ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**

Стр.

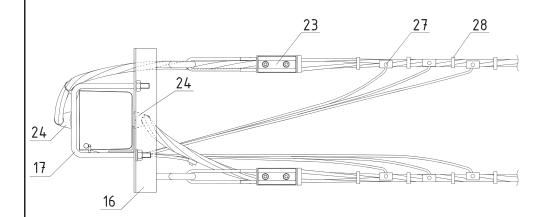
160

СХЕМА РАСПОЛОЖЕНИЯ ($AXCES^{TM}$)

	Стойка		Изгидающий	Н.	H	H,	G	W	Линейная		
Tun опоры	Марка	L	Кол.	момент	П1	112	П3	u	**	арматура	Примечание
		М	шm.	mc.m	М	М	М	М	М	стр.	
КАБк10(20)-5	CB105-5	10,5	1	5,0	7,7	7,2	6,4	2,5	4,1		
КАБк10(20)-6	CB110-5	11,0	1	5,0	8,2	7,7	6,9	2,5	4,3	161	
ПКАБк10(20)-7	CB110-5	11,0	1	5,0	8,2	7,7	6,9	2,5	4,3		


ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7** Стр. ЛИНЕЙНАЯ АРМАТУРА (AXCESTM) ___1 1___ 08'0 0,50 07'0 На спусках кабель и провод крепится к опоре дистанционными фиксаторами п.15 и п.24 через 0,5-0,7 M. , 2 ___2 07'0

ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**


Стр.

162

ЛИНЕЙНАЯ АРМАТУРА (AXCESTM)

ДВУХЦЕПНЫЕ КОНЦЕВЫЕ ОПОРЫ **КАБк10(20)-5, КАБк10(20)-6, ПКАБк10(20)-7**

Стр.

163

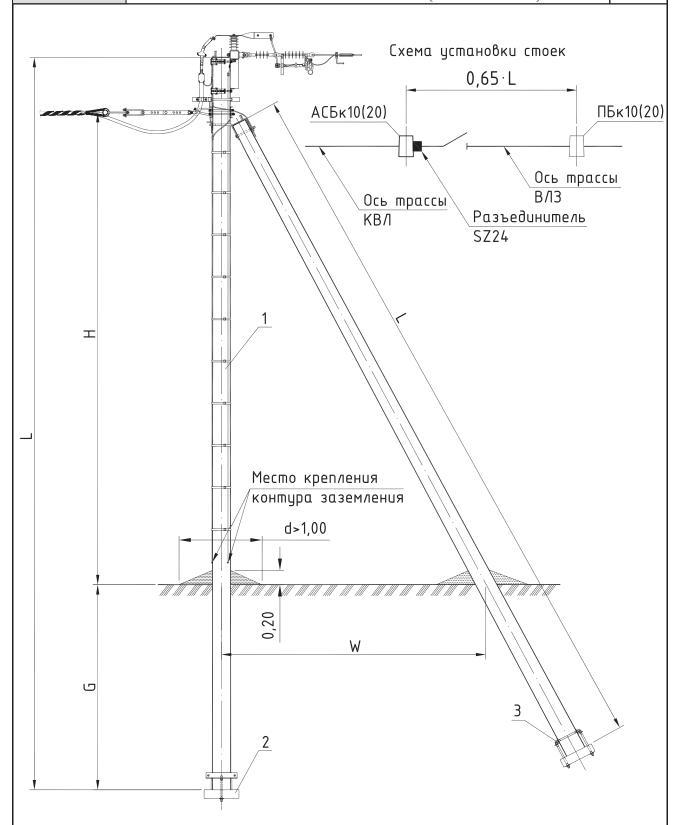
СПЕЦИФИКАЦИЯ (AXCESTM)

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	изделия				
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	191	
2	Плита	П–Зи	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	3	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления	B10	М	8,5		8,0 м для стоек СВ105
8	Ограждение Швеллер 100х80х3, ГОСТ 8278-83		М	2x2,3		
9	Крюк	SOT142R	шm.	2	211	
10	Ta <i>n</i> pen	S0155.1	шm.	2	214	
11	Скрепа	COT36.2R	шm.	10	231	
12	Лента бандажная	COT37.2R	М	12,0	231	
	Арматура магистралі	∟ КВЛ 10-20 кВ				
13	Спиральная вязка	PLP180 (PLP200)	шm.	2	218	
14	Зажим плашечный	SL37.2	шm.	3	228	
15	Дистанционный бандаж	S075.100	шm.	14	223	
	Металлоконструкци	и ВЛИ 0,4 кВ				
16	Τραβερςα	TM78a	шm.	1	194	
17	Хомут	X51 (X1)	шm.	1	207	
18	Заземляющий проводник	SH705R	шm.	1	208	
19	Проводник заземления	B10	М	7,5		7,0м для стоек СВ105
20	Ограждение Швеллер 100х80х3, ГОСТ 8278-83		М	2x2,3		
21	Скрепа	COT36.2R	шm.	2	231	
22	Лента бандажная	COT37.2R	М	4,8	231	
	Арматура магистра	ли ВЛИ 0,4 кВ				
23	Зажим натяжной	S0118.1201S	шm.	2	226	
24	Дистанционный бандаж	S079.6	шm.	12	228	
25	Зажим прокалывающий	SLIP22.1	шm.	2	234	
26	Зажим прокалывающий	SLIP22.127	шm.	8	234	
27	Ограничитель перенапряжений	SE45.DR (SE46.D)	шm.	6	235	
28	Бандаж	PER15	шm.	8	231	
29	Зажим плашечный	SL37.2	шm.	2	228	
30	Провод изолированный***	СИП-4	М	1,0		
31	Муфта концевая	STK.D	шm.	2	238	Выбирается по марке и сечению кабеля

- * Стяжка SH702R применяется для стоек CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ110, кронштейн У1 для стоек СВ105.
- *** Сечение изолированного провода СИП-4 определяется в соответствии с п.2.4.48 и п.1.7.126 ПУЭ 7 издания [1].

знервик	ДЛЯ ЗАМЕТОК	Стр.

Стр.


Часть VIII

Отдельные элементы КВЛ 10-20 кВ

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-1, АСБк10(20)-2, АСБк10(20)-3 с SZ24**

Стр.

СХЕМА РАСПОЛОЖЕНИЯ (ВАРИАНТ 1)

Длину пролета L см. таблицы расчетных пролетов в пояснительной записке.

	Сп	ιοῦκα		Изгибающий		.,	_	Линейная		
Tun опоры	Марка	L	Кол.	момент	Н	W	l li	арматура	Примечание	
	Марка	М	шm.	mc.m	М	М	М	cmp.		
АСБк10(20)-1	CB95-3	9,5	2	3,0	6,65	3,5	2,2			
АСБк10(20)-2	CB105-5	10,5	2	5,0	7,55	4,1	2,3	167		
АСБк10(20)-3	CB110-5	11,0	2	5,0	8,05	4,3	2,3			

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-1, АСБк10(20)-2, АСБк10(20)-3 с SZ24**

Стр.

167

ЛИНЕЙНАЯ АРМАТУРА (ВАРИАНТ 1)

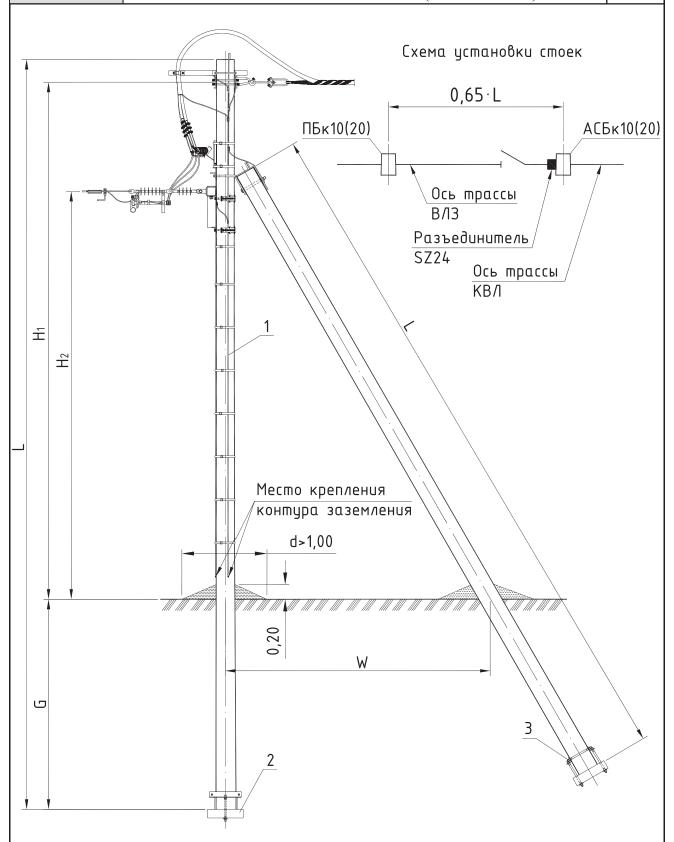
АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-1, АСБк10(20)-2, АСБк10(20)-3 с SZ24** Стр. ЛИНЕЙНАЯ АРМАТУРА (ВАРИАНТ 1) 9 8 8 6 2 T

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-1, АСБк10(20)-2, АСБк10(20)-3 с SZ24**

Стр.

169

СПЕЦИФИКАЦИЯ (ВАРИАНТ 1)


Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Железобетонные	изделия				
1	Стойка железобетонная	CB95-3, (CB110-5) (CB105-5)	шm.	2	190	
2	Плита	П–3и	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Траверса	SH188.3R	шm.	1	193	
5	Кронштейн	KMu-4	шm.	1	199	
6	Хомут**	X51 (X1)	шm.	1	207	
7	Шина	Ши1	шm.	3	198	
8	Кабельный наконечник	LUG.0	шm.	3	233	
9	Болт М12х150	M12	шm.	6		
10	Γαῦκα	M12	шm.	9		
11	Кабельный наконечник	LUG6-50/8LVTIN	шm.	1	233	
12	Болт М8х20	M8	шm.	3		Для кронштейна КМи-4
13	Γαῦκα	M8	шm.	3		Для кронштейна КМи-4
14	Проводник заземления	B10	М	18		
15	Кронштейн***	94 (91)	шm.	1	202	
16	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
17	Заземляющий проводник	SH705.1R	шm.	3	208	
18	Скоба	SH195R	шm.	3	223	
19	Крюк	SOT142R	шm.	1	211	
20	Сκοδα	CK-12-1A	шm.	1	223	
21	Промежуточное звено	ПРР-12-1	шm.	1	208	
22	Ta <i>n</i> pen	S0155.1	шm.	1	214	
	Арматура магистрали	КВЛ 10-20 кВ				
23	Спиральная вязка	PLP	шm.	1	218	
24	Изолятор натяжной	SDI90.150R	шm.	3	219	
25	Линейный разединитель	SZ24	шm.	3	224	
26	Зажим анкерный	S0255.3 (S0256.3)	шm.	3	220	
27	Концевая муфта	нотиз.п	компл.	1	221	Выбирается по марке и сечению кабеля
28	Ограничитель перенапряжения	HE-S	шm.	3	223	
29	Зажим универсальный	S0125	шm.	1	227	Для кронштейна КМи-4
30	Зажим плашечный	SL37.2	шm.	5	228	
31	Скрепа	COT36.2R	шm.	10	231	
32	Лента бандажная	COT37.2R	М	10,0	231	

- * Стяжка SH702R применяется для стоек СВ95 и СВ110, стяжка SH703R для стоек СВ105.
- ** Хомут X51 применяется для стоек CB95 и CB110, хомут X1 для стоек CB105.
- *** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-2, АСБк10(20)-3 с SZ24**

Стр.

СХЕМА РАСПОЛОЖЕНИЯ (ВАРИАНТ 2)

Длину пролета L см. таблицы расчетных пролетов в пояснительной записке.

	Стойка			Изгидающий	H ₁	H ₂	W	ر	Линейная	Шифр
Tun опоры	Марка	L	Кол.	момент	111	112	W I	l li	арматура	проекта
		М	шm.	mc.m	М	М	М	М	стр.	onop
АСБк10(20)-2	CB105-5	10,5	2	5,0	7,90	6,75	4,1	2,3	171	
АСБк10(20)-3	CB110-5	11,0	2	5,0	8,40	7,25	4,3	2,3	171	

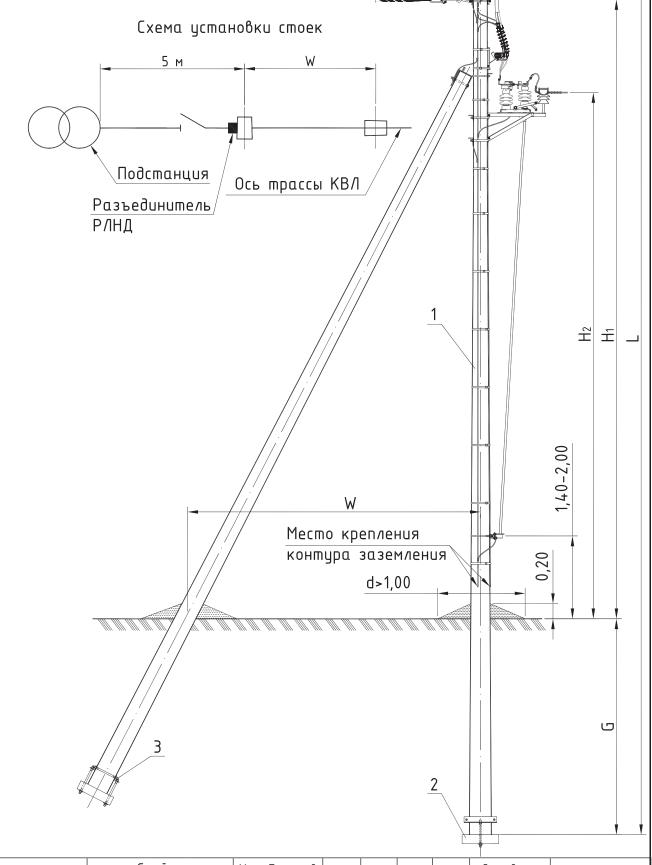
АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ <u>**ACБк10(20)-2, ACБк10(20)-3 c SZ24**</u> Стр. 171 ЛИНЕЙНАЯ АРМАТУРА (ВАРТАНТ 2) S†'l 22 1'30 25 23 0.0 20 12 1 9 12 1 1 26 27 9 16 Sl'0 Sl'0 08'0 15 19

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ <u>**АСБк10(20)-2, АСБк10(20)-3 с SZ24**</u> Стр. 172 ЛИНЕЙНАЯ АРМАТУРА (ВАРИАНТ 2) 22 11 12 25 23 ம Ħ ∞ 9 0 19

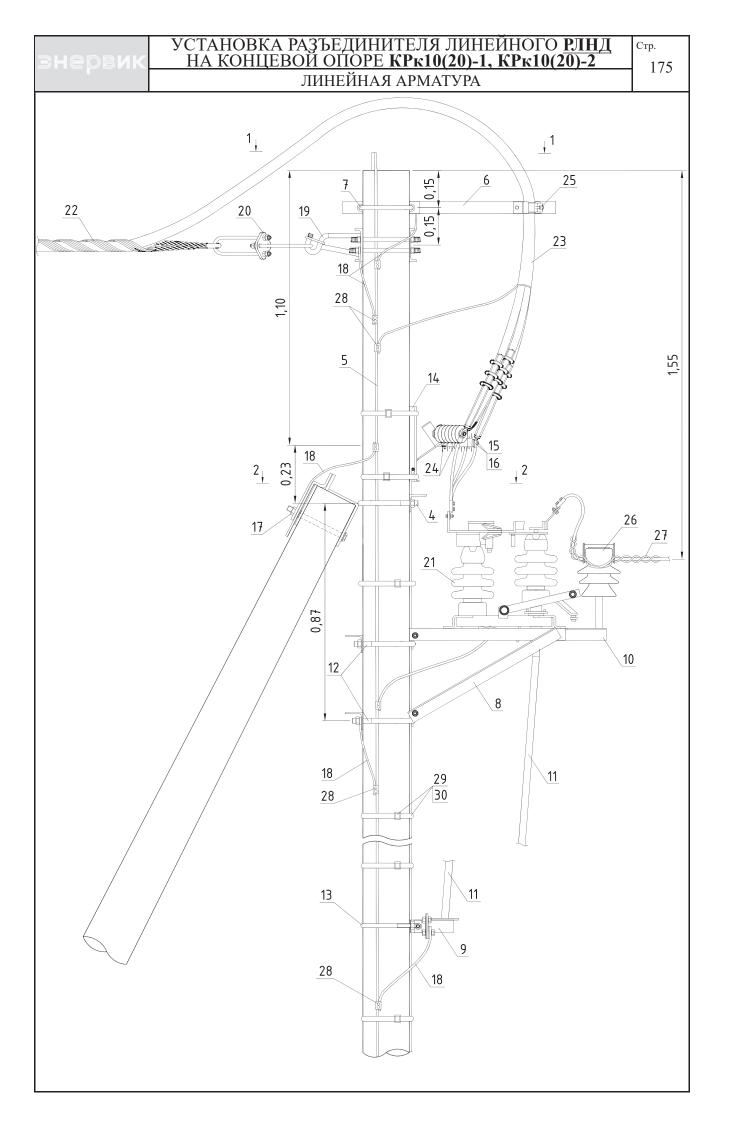
энервик

АНКЕРНАЯ ОПОРА СО СМЕНОЙ ПРОВОДОВ **АСБк10(20)-2, АСБк10(20)-3 с SZ24**

Стр.


173

СПЕЦИФИКАЦИЯ (ВАРИАНТ 2)


Поз.	Наименование	Марка	Ед. изм.	Кол- во	Стр.	Примечание
	Железобетонные					
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	190	
2	Плита	П–3и	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Проводник заземления	B10	М	18		
5	Траверса	SH188.3R	шm.	1	193	
6	Кронштейн	KMu-4	шm.	1	199	
7	Кронштейн для крепления ОПН	SH701R	шт.	1	200	
8	Кронштейн**	94 (91)	шm.	1	202	
9	Хомут***	X51 (X1)	шm.	1	207	
10	Кабельный наконечник	LUG6-50/ 8LVTIN	шm.	1	233	
11	Болт М8х20	M8	шm.	3		
12	Γαῦκα	M8	шm.	3		
13	Кабельный наконечник	LUG.0	шm.	3	233	
14	Γαῦκα	M12	шm.	3		
15	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
16	Заземляющий проводник	SH705.1R	шm.	3	208	
17	Крюк	SOT142R	шm.	1	211	
18	Талреп	S0155.1	шm.	1	214	
	Арматура магистрали	КВЛ 10-20 кВ				
19	Спиральная вязка	PLP	шm.	1	218	
20	Изолятор натяжной	SDI90.150R	шm.	3	219	
21	Линейный разединитель	SZ24	шm.	3	224	
22	Зажим анкерный	S0255.3 (S0256.3)	шm.	3	220	
23	Концевая муфта	НОТИЗ.□	компл.	1	221	
24	Ограничитель перенапряжения	HE-S	шm.	3	223	
25	Зажим универсальный	S0125	шm.	1	227	Для кронштейна КМи-4
26	Зажим плашечный	SL37.2	шm.	5	228	
27	Скрепа	COT36.2R	шm.	10	231	
28	Лента бандажная	C0T37.2R	М	10,0	231	

- * Стяжка SH702R применяется для стоек CB95 и CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Хомут X51 применяется для стоек CB95 и CB110, хомут X1 для стоек CB105.

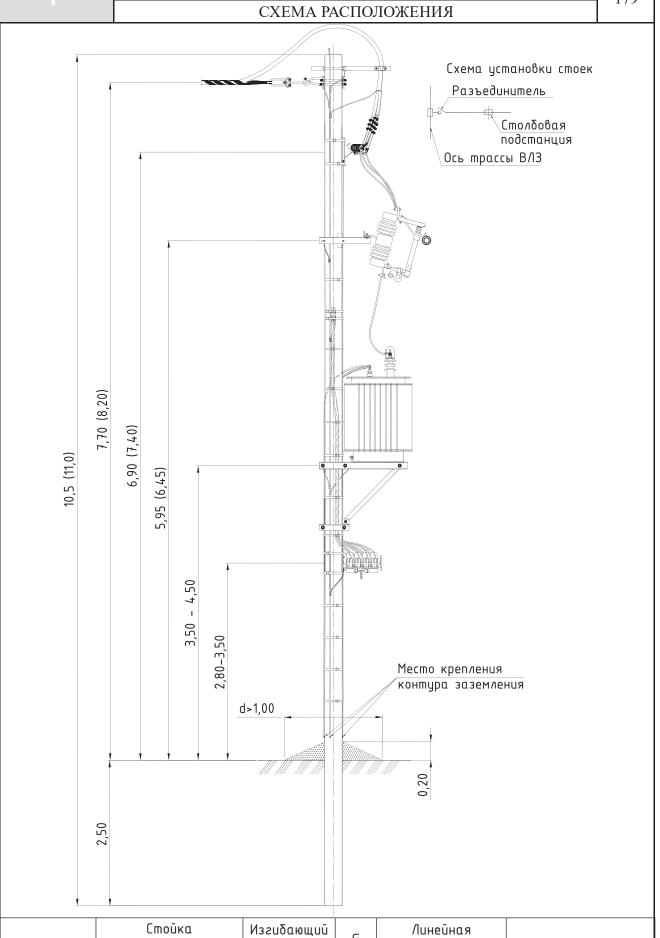
УСТАНОВКА РАЗЪЕДИНИТЕЛЯ ЛИНЕЙНОГО <u>РЛНД</u> НА КОНЦЕВОЙ ОПОРЕ **КРк10(20)-1, КРк10(20)-2** Стр. 174 СХЕМА РАСПОЛОЖЕНИЯ Схема установки стоек 5 м W Подстанция

	Стойка			Изгидающий	Н	H	W	ر	Линейная	
Tun опоры	Марка	L	Кол.	момент	111	112	vv	ט	арматура	Примечание
		М	шm.	mc.m	М	М	Μ	М	стр.	
KPκ10(20)-1	CB105-5	10,5	2	5,0	7,90	6,65	4,1	2,3	175	
KPκ10(20)-2	CB110-5	11,0	2	5,0	8,4	7,15	4,3	2,3	175	

УСТАНОВКА РАЗЪЕДИНИТЕЛЯ ЛИНЕЙНОГО <u>РЛНД</u> НА КОНЦЕВОЙ ОПОРЕ **КРк10(20)-1, КРк10(20)-2** Стр. ЛИНЕЙНАЯ АРМАТУРА 1–1 OC <u>7</u> <u>14</u> 2-2 0 000

УСТАНОВКА РАЗЪЕДИНИТЕЛЯ ЛИНЕЙНОГО <u>РЛНД</u> НА КОНЦЕВОЙ ОПОРЕ **КРк10(20)-1, КРк10(20)-2** СПЕЦИФИКАЦИЯ

Стр.


178

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Стр.	Примечание
	Железобетонные					
1	Стойка железобетонная	CB110-5 (CB105-5)	шm.	2	191	
2	Плита	П–3и	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Проводник заземления	B10	М	16		
6	Кронштейн	KMu-4	шm.	1	199	
7	Хомут***	X51 (X1)	шm.	1	207	Для кронштейна КМи-4
8	Кронштейн	PA1	шm.	1	203	
9	Кронштейн	PA2	шm.	1	204	
10	Кронштейн	PA5	шm.	3	205	
11	Вал привода	PA3	шm.	2	205	
12	Хомут	X7	шm.	2	206	
13	Хомут	X8	шm.	1	206	
14	Кронштейн для крепления ОПН	SH701R	шm.	1	200	
15	Кабельный наконечник	LUG.0	шm.	3	233	
16	Γαῦκα	M12	шm.	3		
17	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
18	Заземляющий проводник	SH705.1R	шm.	6	208	
19	Крюк	SOT142R	шm.	1	211	
20	Tanpen	S0155.1	шm.	1	214	
	Арматура магистрали	КВЛ 10-20 кВ				
21	Разъединитель линейный наружной установки двухколонковый	РЛНД-1-10- 200У1 (400У1, 630У1)	шm.	1		
22	Спиральная вязка	PLP	шm.	1	218	
23	Концевая муфта	нотиз.п	шm.	1	221	Выбирается по марке и сечению кабеля
24	Ограничитель перенапряжения	HE-S	шm.	3	223	
25	Зажим универсальный	S0125	шm.	1	227	Для кронштейна КМи-4
26	Изолятор штыревой	SDI37	шm.	3	219	
27	Спиральная вязка	S0115.0 (C0.0)	шm.	6	220	
28	Зажим плашечный	SL37.2	шm.	7	233	
29	Скрепа	C0T36.2R	шm.	10	231	
30	Лента бандажная	C0T37.2R	М	10,0	231	

- * Стяжка SH702R применяется для стоек CB95 и CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.
- *** Хомут X51 применяется для стоек CB95 и CB110, хомут X1 для стоек CB105.
- 1. Все металлические элементы опоры, кронштейны и узел крепления привода заземлить проводниками SH705.1R присоединением к заземляющему спуску.
- 2. На ручном приводе предусмотреть установку замка.
- 3. Ремонтные работы на опоре с разъединителем выполнять при отключенном питании ВЛ с обеих сторон опоры.

ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ НАПРЯЖЕНИЕМ 10/0,4 кВ МОЩНОСТЬЮ от 25 до 63 кВА СТОЛБОВОГО ТИПА

_{Стр.} 179

	Стойка			_ Изгидающий		Линейная		
Tun опоры	Марка	Ĺ	Кол.	момент	ט	арматура	Примечание	
	Παρκα	М	шm.	MC.M	М	cmp.		
СТПк10(20)-1	CB105-5	10,5	2	5,0	2,5	180	проект шифр	
CTΠκ10(20)-2	CB110-5	11,0	2	5,0	2,5	100	ОТП.С.03.61.36(u)	

ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ НАПРЯЖЕНИЕМ 10/0,4 кВ МОЩНОСТЬЮ от 25 до 63 кВА СТОЛБОВОГО ТИПА Стр. 180 ЛИНЕЙНАЯ АРМАТУРА 15₁0,15₁ 20 <u>18</u> 14 <u>10</u> <u>11</u> 22 <u>17</u> <u>14</u> 26 08'0 16 0,95 23 1<u>2</u> 13 4 14 26 1<u>5</u> 27 28 29 36 31 32 33 34 42 24 0 14 14 26/ 3,50 - 4,00 0,40 37 38 39 - 3,50

43

2,80

Место крепления контура заземления

ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ НАПРЯЖЕНИЕМ 10/0,4 кВ МОЩНОСТЬЮ от 25 до 63 кВА СТОЛБОВОГО ТИПА Стр. ЛИНЕЙНАЯ АРМАТУРА 16 29 Место крепления контура заземления

ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ НАПРЯЖЕНИЕМ 10/0,4 кВ МОЩНОСТЬЮ от 25 до 63 кВА СТОЛБОВОГО ТИПА СПЕЦИФИКАЦИЯ

182

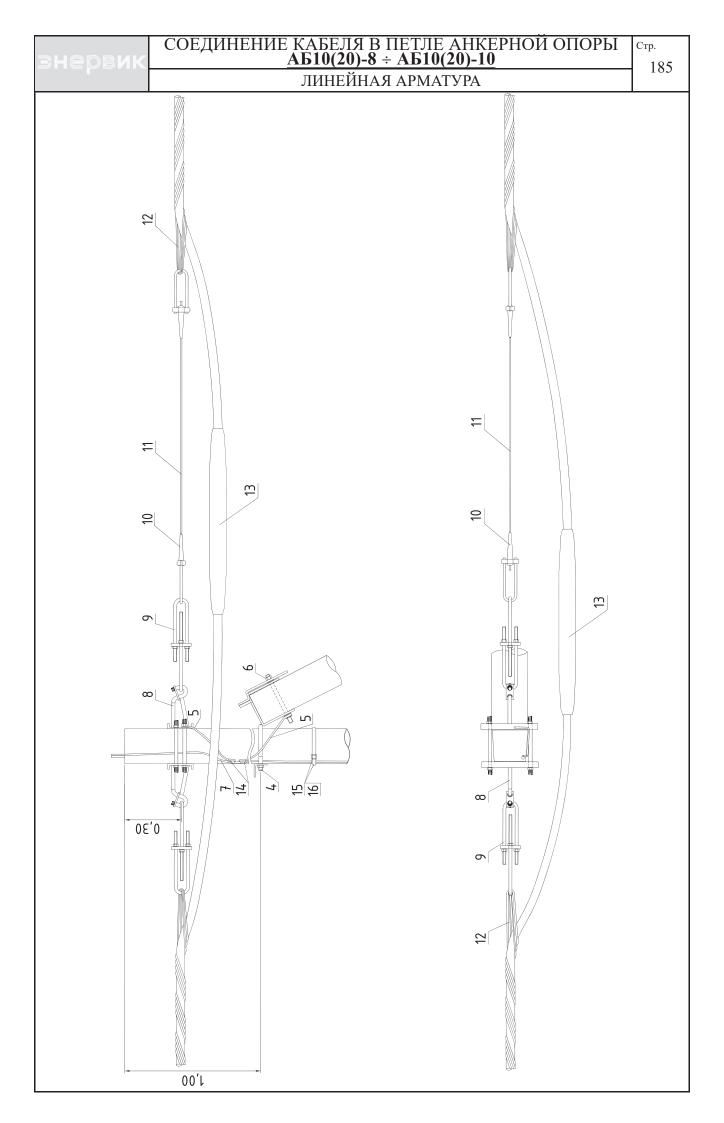
			Специф	икаци	СПЕЦИФИКАЦИЯ				
Поз.	Н	аименование	Марка	Ед. изм.	Кол- во	Стр.	Примечание		
		Железобетонные	изделия						
1	Стойка же	лезобетонная	CB110-5 (CB105-5)	шm.	1	191			
		Металлоконструкции Р	КВЛ 10-20 кВ						
2	Проводник	заземления	B10	М	27				
3	Кронштейн	l	KMu-4	шm.	1	199			
4	Кронштейн	для крепления ПРВТ	KP12	шm.	1	201			
5	Крепление	трансформатора		шm.	1		см. проект ОТП.С.03.61.36(и)		
6	Кронштейн	для крепления ОПН	SH701R	шm.	1	200			
7	Хомут*		X51 (X1)	шm.	2	207			
8	Кαδельный	наконечник	LUG.0	шm.	6	233	Выбирается по сече- нию провода		
9	Γαῦκα		M12	шm.	3				
10	Болт М8х2	0	M8	шm.	2		Для кронштейна КМи-		
11	Γαῦκα		M8	шm.	2		Для кронштейна КМи-		
12	Болт М16х	25	M16	шm.	3				
13	Γαῦκα		M16	шm.	3				
14	Заземляющ	ий проводник	SH705.1R	шm.	5	208			
15	Бандажная	лента	C0T37.2R	М	15	231			
16	Скрепа		C0T36.2R	шm.	15	231			
17	Крюк		SOT142R	шm.	1	211			
18	Ta <i>r</i> pen		S0155.1	шm.	1	214			
	А	рматура магистрали	КВЛ 10-20 кВ						
19	Спиральная	я вязка	PLP	шm.	1	218			
20	Зажим уни	версальный	S0125	шm.	1	227	Для кронштейна КМи-		
21	Ограничит	ель перенапряжения	HE-S	шm.	3	223	·		
22	Муфта кон	нцевая	H0TU3.□R	компл.	1	221	Выбирается по марке		
23	Предохрані выхлопного	о шпиа пшечр-bазреденпшечр	ПРВТ-10	шm.	3				
24	Трансформ	ашор	TMΓ (2563A)	шm.	1				
25	Комплект	защиты от птиц	SP36.3	компл.	1	224			
26	Плашечный	зажим	SL37.2	шm.	5	233			
		Металлоконструкции	ВЛИ 0,4 кВ						
27	Крюк банд	ажный	S0T29.10R	шm.	1	230			
28	Бандажная	лента	C0T37.2R	шm.	8	231			
29	Скрепа		COT36.2R	шm.	4	231			
30	Кαδельный	наконечник	LUG.□R	шm.	5	233			
31	Кабельный	наконечник	LUG6-50/ 8LVTIN	шm.	1	233			
32	Болт ГОСТ	7798-70	M8	шm.	1				
33		T 18123–82	Dвн.рез=8,4мм	шm.	2				
34	Γαῦκα ΓΟΟ		M8	шm.	1				
35		ий проводник	SH705R	шm.	1	208			
36	Зажим анк	· · · · · · · · · · · · · · · · · · ·	S0118.1201S	шm.	1	226			
					I				

ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ НАПРЯЖЕНИЕМ 10/0,4 кВ МОЩНОСТЬЮ от 25 до 63 кВА СТОЛБОВОГО ТИПА СПЕЦИФИКАЦИЯ

Стр. 1 **С**

183

Поз.	Наименование	Марка	Ед. изм.	Кол- во	Cmp.	Примечание
	Арматура магистрали	ВЛИ 0,4 кВ				
37	Мачтовый рубильник	SZ.0	шm.	1	231	
38	Плавкая вставка	ппн	шm.	3(4)		Количество плав- ких вставок зави- сит от количества полюсов рубиль- ника
	Шина для крепления табличек	PEM216R	шm.	1	236	
39	Табличка с обозначением ном. токов	PEM242.0R	шm.	1	236	
	Табличка с обозначением номеров фидеров	PEM241.□R	шm.	1	236	
40	Дистанционный фиксатор	S079.1	шm.	6	228	Устанавливается каждые 0,5-0,7м
41	Зажим прокалывающий	SLIP22.1	шm.	1	234	
42	Зажим прокалывающий	SLIP22.127	шm.	2	234	
43	Зажим плашечный	SL37.2	шm.	1	233	
44	Провод изолированный	СИП-4	М	1,0		


Примечание:

- 1. Закрепление стоек в грунте выполняется в соответствие с указаниями раздела 5 пояснительной записки.
- 2. Заземлению подлежат нейтраль и корпус трансформатора, все металлические элементы опоры, кронштейны, крюки, которые могут оказаться под напряжением при повреждении изоляции. Заземление выполнить проводниками SH705.1R присоединением к заземляющему спуску с помощью сварки или плашечных зажимов.
- 3. Заземление кронштейна SH701R (поз. 6) с ОПН HE-S выполнить отдельным заземляющим спуском.
- 4. Заземляющее устройство трансформаторной подстанции 10/0,4 кВ выполнить в соответствии с требованиями ПУЭ седьмого издания п.1.7.96, п.1.7.98 и 1.7.101 и согласно указаниям проекта повторного применения шифр 3.407-150 "Заземляющие устройства опор ВЛ 0,38; 6; 10; 20; 35 кВ".
- 5. Оперирование предохранитель-разъединителями выполнять только при отключенной магистрали ВЛ 10-20 кВ.
- * Хомит X51 применяется для стоек CB95 и CB110, хомит X1 для стоек CB105.

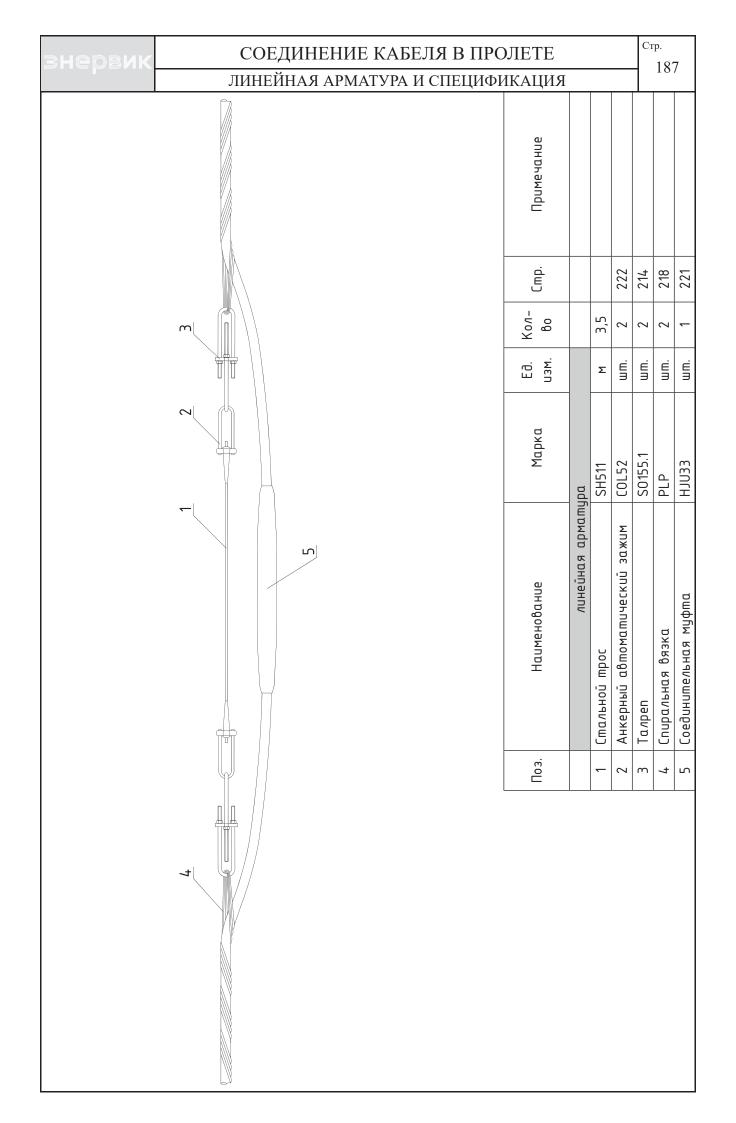
Настоящие материалы являются эскизами, описывающими общие конструктивные решения и требуют уточнения при рабочем проектировании конкретного объекта.

СОЕДИНЕНИЕ КАБЕЛЯ В ПЕТЛЕ АНКЕРНОЙ ОПОРЫ **АБ10(20)-8** ÷ **АБ10(20)-10** Стр. 184 СХЕМА РАСПОЛОЖЕНИЯ Схема установки стоек W Ось трассы КВЛ И ВЛИ エ Место крепления контура заземления W d>1,00

	Стойка			илторизеN	н	W	G	Линейная		
Tun опоры	попоры L Кол. момент		u	арматура	Примечание					
	Марка	М	шm.	MC.M	М	М	М	cmp.		
АБк10(20)-8	CB95-3	9,5	2	3,0	7,0	3,5	2,2			
АБк10(20)-9	CB105-5	10,5	2	5,0	7,9	4,1	2,3	185		
АБк10(20)-10	CB110-5	11,0	2	5,0	8,4	4,3	2,3			

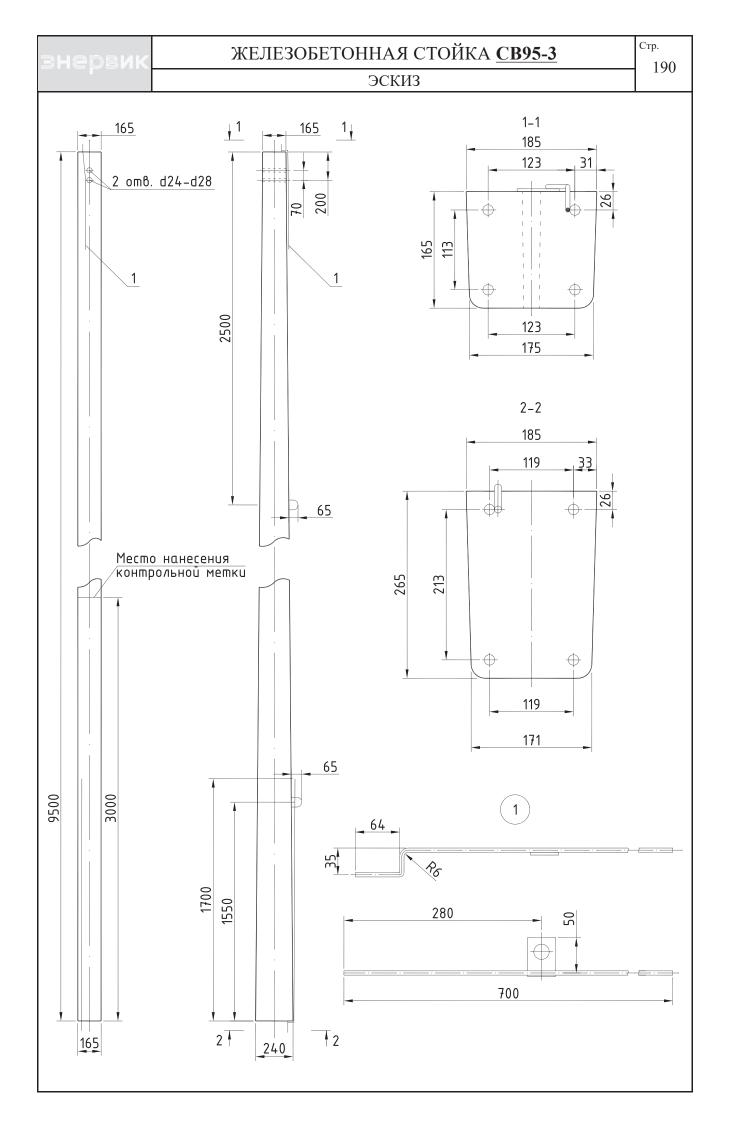
СОЕДИНЕНИЕ КАБЕЛЯ В ПЕТЛЕ АНКЕРНОЙ ОПОРЫ $\mathbf{A}\mathbf{\bar{b}10(20)}\mathbf{-8} \div \mathbf{A}\mathbf{\bar{b}10(20)}\mathbf{-10}$

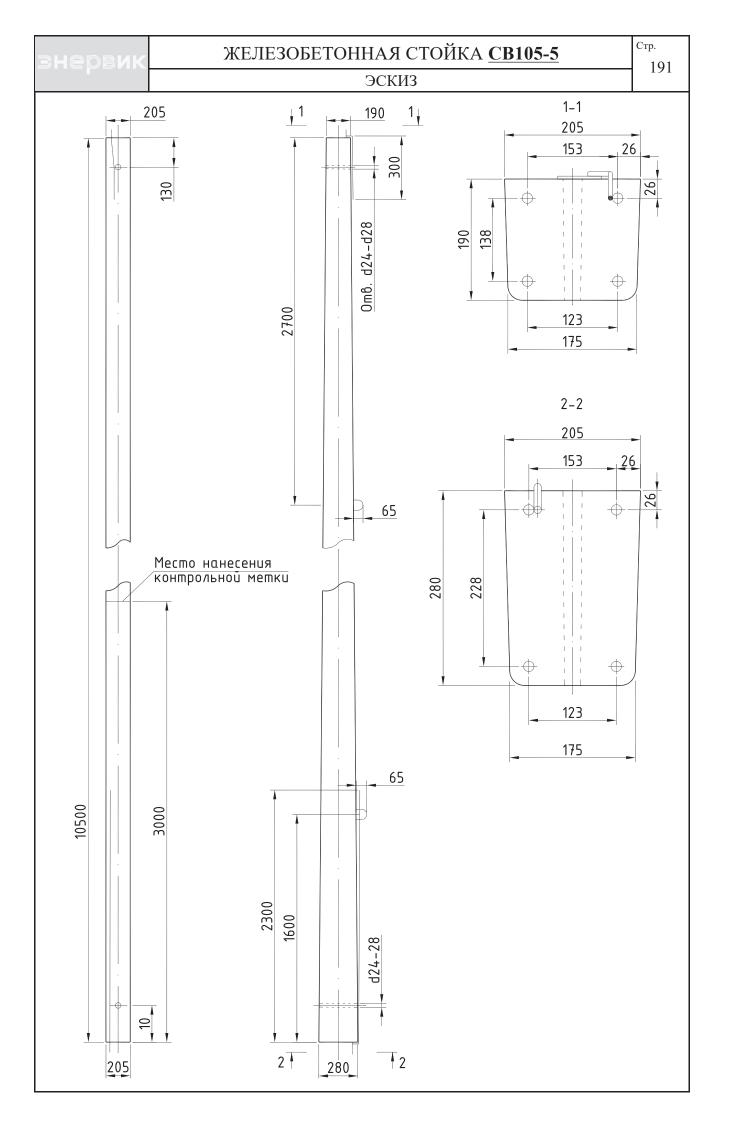
ЛИНЕЙНАЯ АРМАТУРА

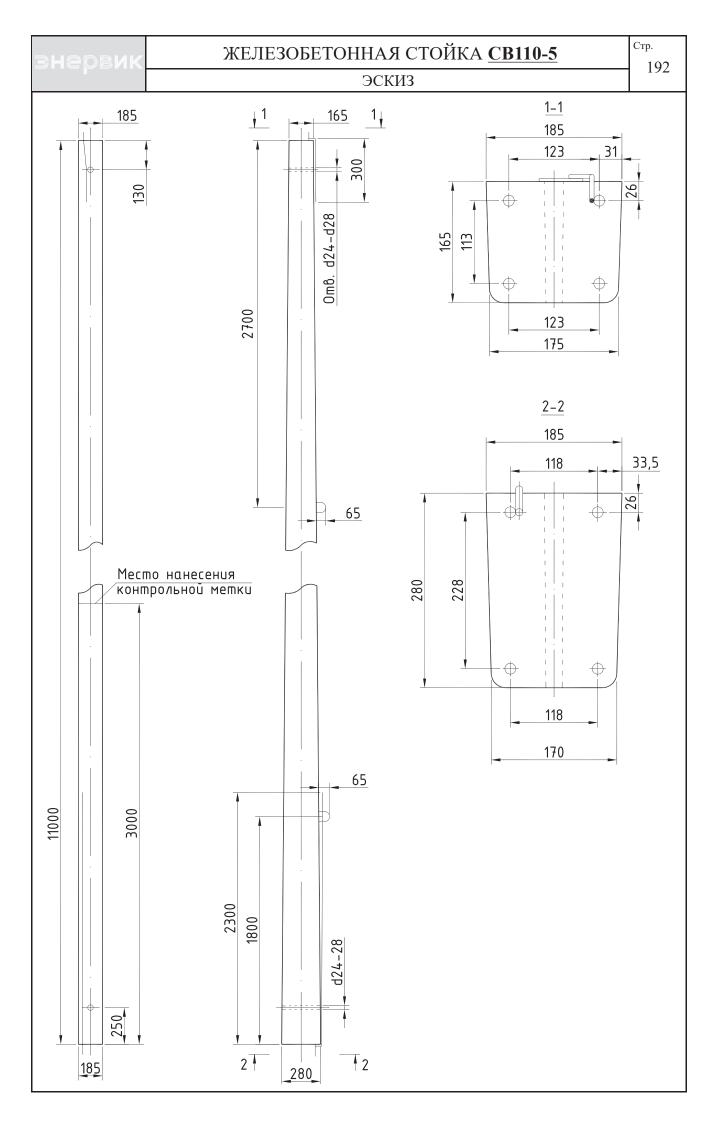

186

Стр.

Поз.	Наименование	Марка	Ед.	Кол- во	Стр.	Примечание
	Железобетонные	изделия				
1	Стойка железобетонная	CB95-3 (CB110-5) (CB105-5)	шm.	2	190	
2	Плита	П-3и	шm.	2	215	
	Металлоконструкции	КВЛ 10-20 кВ				
3	Стяжка*	SH702R (SH703R)	шm.	2	209	
4	Кронштейн**	94 (91)	шm.	1	202	
5	Заземляющий проводник	SH705.1R	шm.	2	208	
6	Γαῦκα ΓΟСΤ 5915-70	M20	шm.	1		
7	Проводник заземления ГОСТ2590-71	B10	М	7,5		8,5м для стоек СВ110 8,0м для стоек СВ105
8	Крюк	S0T142.2R	шm.	1	212	
9	Ta <i>n</i> pen	S0155.1	шm.	2	214	
10	Анкерный автоматический зажим	COL52	шm.	2	222	
11	Трос стальной	SH511	М	3,0		
	Арматура магистралі	КВЛ 10−20 кВ				
12	Спиральная вязка	PLP180 (PLP200)	шm.	2	218	
13	Mudma cooduumma si usa	HJU33.2401	шm.	1	221	EXCEL/FXCEL
L 13	Муфта соединительная	HJU33.2402	шm.	1	221	AXCES
14	Зажим плашечный	SL37.2	шm.	2	233	
15	Скрепа	COT36.2R	шm.	11	231	
16	Бандажная лента	COT37.2R	М	11,0	231	

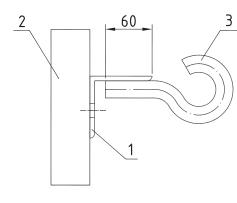

Примечание:

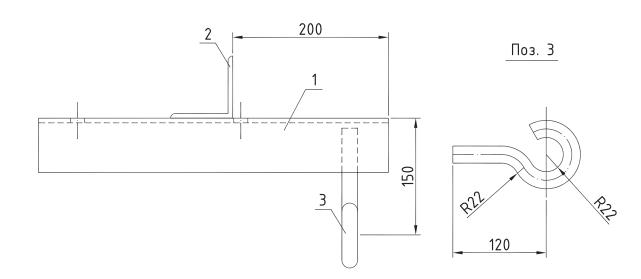

- * Стяжка SH702R применяется для стоек CB95 и CB110, стяжка SH703R для стоек CB105.
- ** Кронштейн У4 для стоек СВ95 и СВ110, кронштейн У1 для стоек СВ105.



знервик	ДЛЯ ЗАМЕТОК	Стр.
	<u>'</u>	

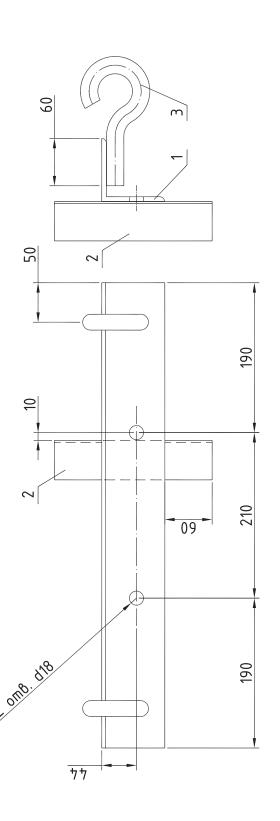
Часть IX Стойки опор, металлоконструкции и опорно-анкерные плиты

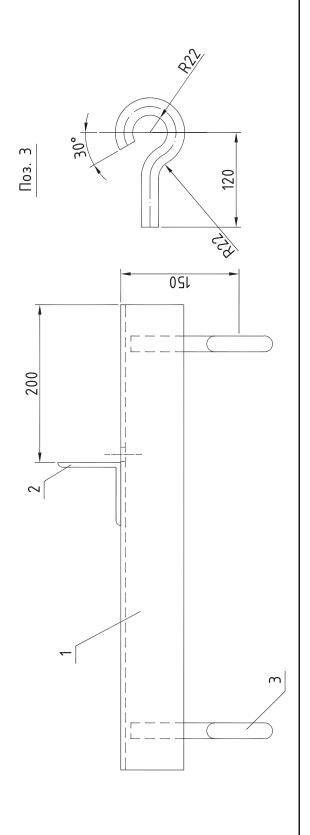

Стр. МЕТАЛЛОКОНСТРУКЦИИ 193 TPABEPCA SH188.3R 1000 450 450 200 d24 100×100×4 219 0 哑 0 (**P** _P 0 \bigcirc


ЗНервик	МЕТАЛЛОКОНСТРУКЦИИ
	TPABEPCA TM78 (TM78A)

Стр.

194

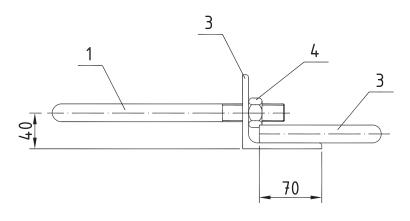


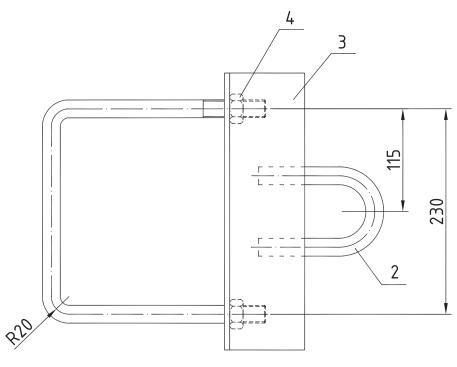

Траверса ТМ78А имеет зеркальное расположение деталей относительно оси.

Поз.	Наименование	Количество	Примечание
	Детали		
1	Уголок 80x80x6 ГОСТ8509-93, L=450 мм	1	3,3 кг
2	Уголок 50x50x5 ГОСТ8509-93, L=450 мм	1	0,75 кг
3	Круг d22 ГОСТ 2590-88, L=240	1	0,4 кг

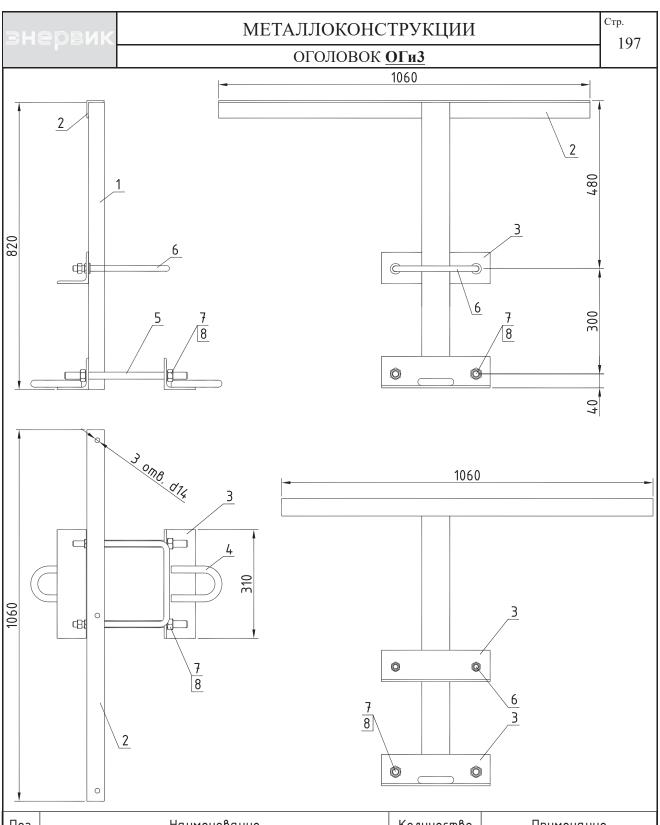
Стр.

ТРАВЕРСА <u>ТМ78</u>Б

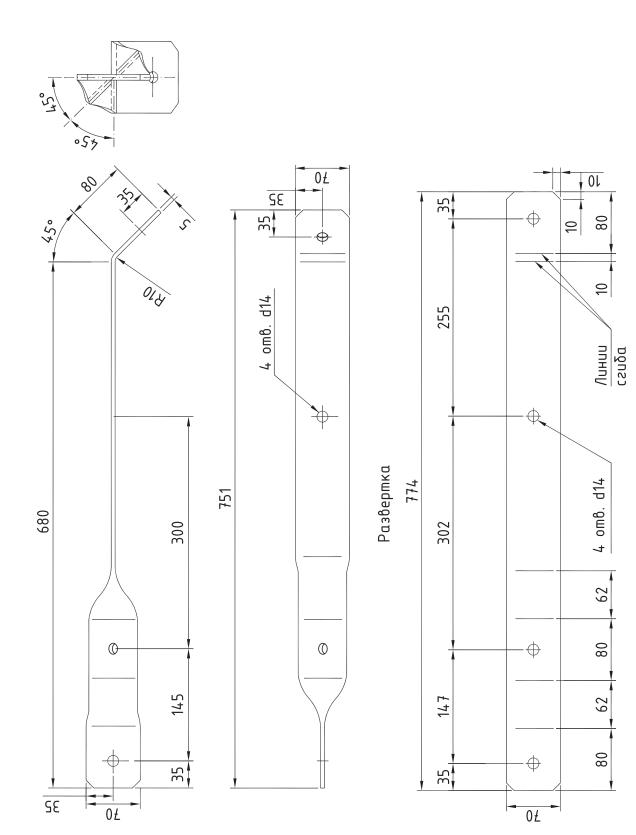



Поз.	Наименование	Количество	Примечание
	Детали		
1	Уголок 80x80x6 ГОСТ8509-93, L=590 мм	1	4,3 кг
2	Уголок 50x50x5 ГОСТ8509-93, L=200 мм	1	0,75 кг
3	Круг d22 ГОСТ 2590-88, L=240	1	0,72 кг

МЕТАЛЛОКОНСТРУКЦИИ КРОНШТЕЙН <u>ОТ22а</u>

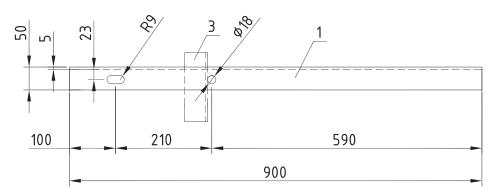

Стр.

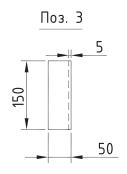
196

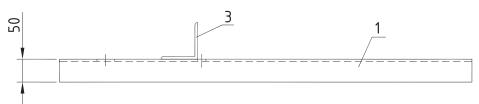


Поз.	Наименование	Количество	Примечание
	Детали		
1	Круг d20 ГОСТ25-90-88, L=704 мм	1	1,8 кг
2	Круг d20 ГОСТ2590-88, L=452	1	1,1 кг
3	Чголок 90х90х6 ГОСТ8509-93, L=310 мм	1	2,6 кг
	Детали		
4	Γαῦκα M20 ΓΟCT5915-70, L=200	2	

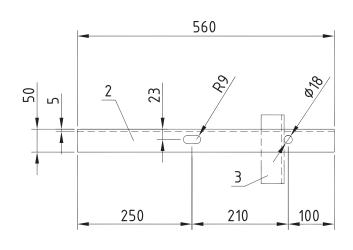
Поз.	Наименование	Количество	Примечание
	Детали		
1	Швеллер стальной горячекатанный 8У (80х40х4,5), L=820 мм, ГОСТ 8240-97	1	
2	Чголок 50x50x5 ГОСТ8509-86, L=1060 мм	1	
3	Чголок 90х90х6 ГОСТ8509-93, L=310 мм	3	
4	Круг d20 ГОСТ2590-88, L=452 мм	2	
5	Болт М16, L=360 мм	2	
6	Хомут X42 для стоек СВ95 и СВ110 (ХЗ для СВ105)	1	
	Стандартные изделия		
7	Γαῦκα M16 ΓΟCT5915-70, L=200	2	
8	Шαūδα 16 ΓΟCT 113 <i>7</i> 1	2	

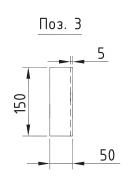

			K

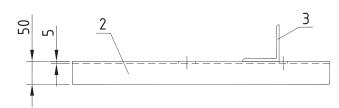

МЕТАЛЛОКОНСТРУКЦИИ


Стр. 199

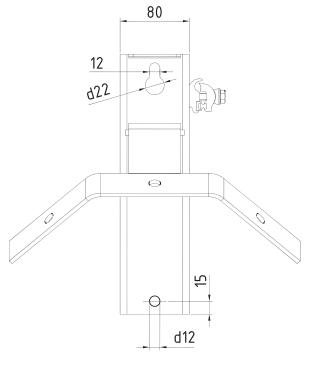
КРОНШТЕЙНЫ **КМи-3, КМи-4**

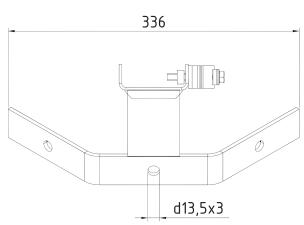

Кронштейн КМи-3

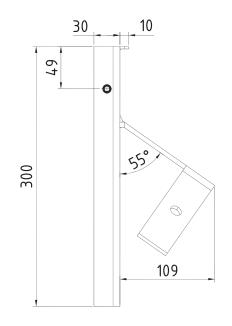


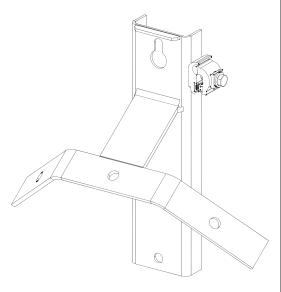


Кронштейн КМи-4

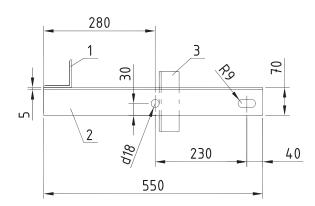


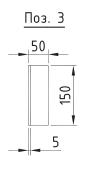


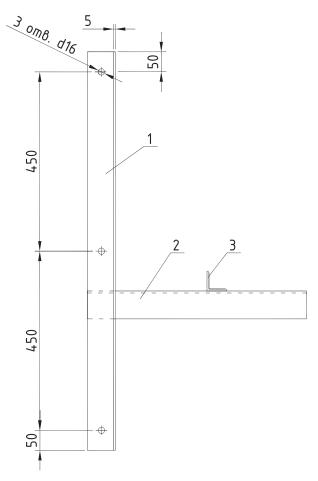


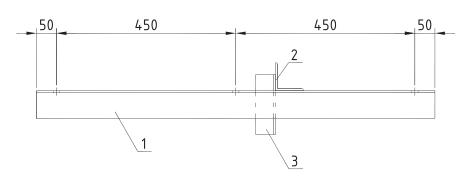

Поз.	Наименование	Количество	Примечание
	Детали		
1	Уголок 50x50x6 ГОСТ8509-93, L=900 мм	1	
2	Уголок 50x50x6 ГОСТ8509-93, L=560 мм	1	
3	Уголок 50x50x5 ГОСТ8509-93, L=150 мм	2	

200

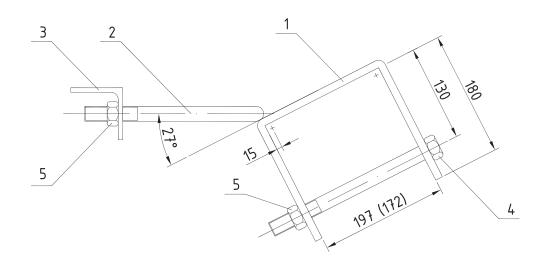


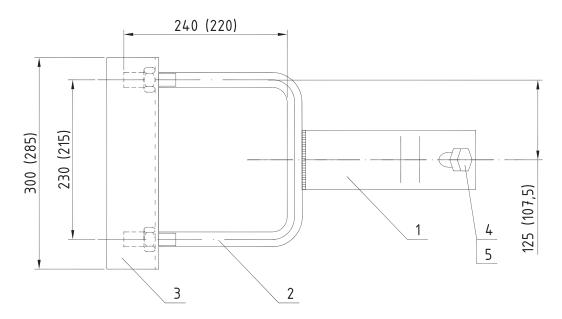






КРОНШТЕЙН <u>КР12</u>

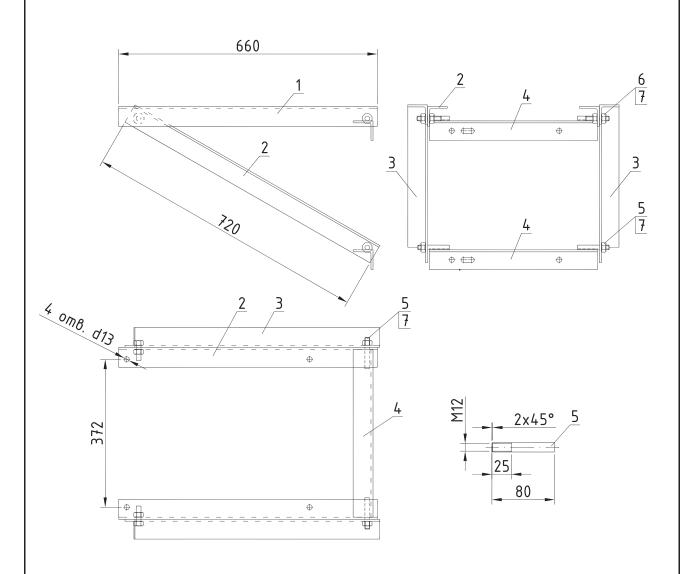



Поз.	Наименование	Количество	Примечание
	Детали		
1	Уголок 70x70x5 ГОСТ8509-93, L=1000 мм	1	
2	Уголок 70x70x5 ГОСТ8509-93, L=550 мм	1	
3	Уголок 50x50x5 ГОСТ8509-93, L=150 мм	1	

МЕТАЛЛОКОНСТРУКЦИИ КРОНШТЕЙНЫ <u>У1, У4</u>

Стр.

202

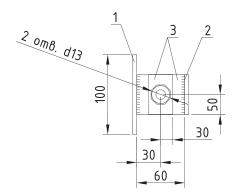


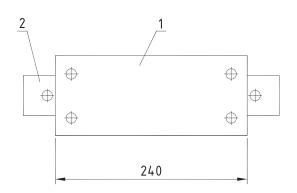
Размеры в скобках даны для кронштейна У4. Кронштейн У1 для стоек СВ105, кронштейн У4 для стоек СВ95 и СВ110.

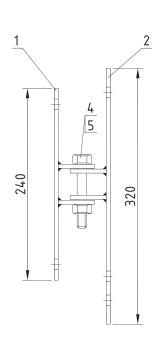
Поз.	Наименование	K	ο/Ι.	Применание
1103.	пиименооиние	91	94	Примечание
	Детали			
1	Полоса 8х80 ГОСТ103-78, L=560 мм	1		2,8 кг
'	Полоса 8х80 ГОСТ103-78, L=540 мм		1	2,7 кг
2	Круг 20 ГОСТ2590-88, L=705 мм	1		1,7 кг
	Круг 20 ГОСТ2590-88, L=649 мм		1	1,6 кг
2	Чголок 70x70x6 ГОСТ8509-86, L=300 мм	1		1,9 кг
ر	Чголок 70x70x6 ГОСТ8509-86, L=285 мм		1	1,8 кг
	Стандартные изделия			
4	Болт М20х240 ГОСТ7798-70	1		
4	Болт М20х220 ГОСТ7798-70		1	
5	Γαῦκα Μ20 ΓΟСΤ5915-70	3	3	

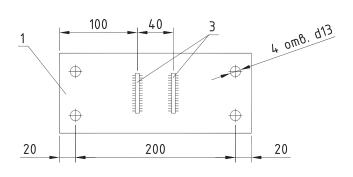
Стр.

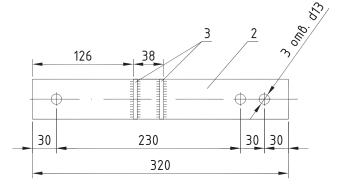
203

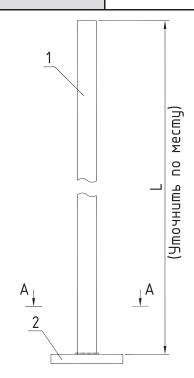



Поз.	Наименование	Кол-во, шт.	Масса, кг
	Детали		
1	Чголок 50x50x5 ГОСТ8509-86	1	2,45
2	Чголок 50x50x5 ГОСТ8509-86	1	2,45
3	Уголок 50x50x5 ГОСТ8509-86	2	5,28
4	Уголок 50x50x5 ГОСТ8509-86	2	3,1
5	Круг 12 ГОСТ 2590-88	4	0,28
6	Болт M12x40 ГОСТ 7798-70	2	0,8
7	Γαῦκα Μ12 ΓΟСΤ5915-70	2	0,2

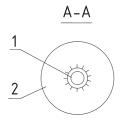

МЕТАЛЛОКОНСТРУКЦИИ


КРОНШТЕЙН <u>РА2</u>


Стр. 204

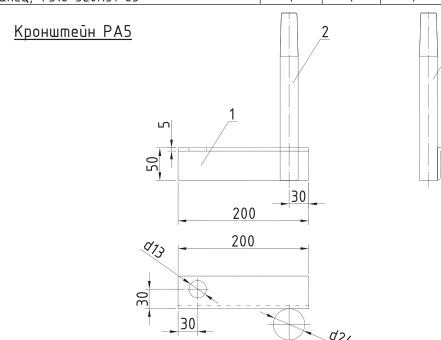


Поз.	Наименование	Кол-во, шт.	Масса, кг
	Детали		
1	Полоса 5х100 ГОСТ103-76	1	1,0
2	Полоса 5x50 ГОСТ 103-76	1	0,63
3	Полоса 5x50 ГОСТ 103-76	4	0,36
4	Болт М12х80 ГОСТ 7798-70	1	0,4
5	Γαῦκα Μ12 ΓΟСΤ 5915-70	1	1,01
6	Шαūδα 12.05 ΓΟCT 11 371-78	1	0,006

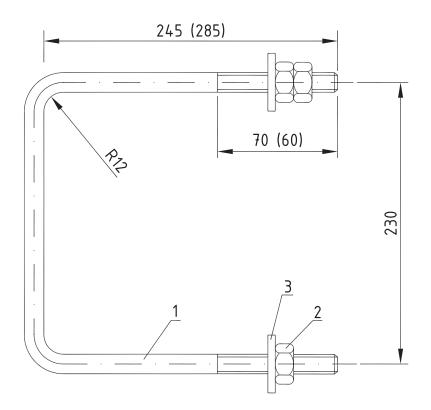

МЕТАЛЛОКОНСТРУКЦИИ

Стр. 205

КРОНШТЕЙНЫ РАЗ и РА5


Кронштейн РАЗ

Марка	L, mm	Масса, кг
PA3	5000	12,0
PA7	5600	13,5
PA8	6200	14,8

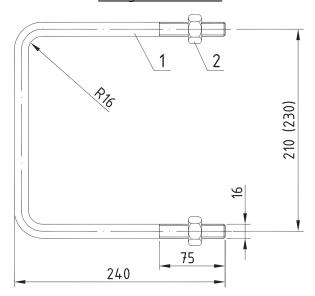

- Фланец поставляется с приводом разъединителя. 1. Сварку производить электродом Э50A ГОСТ9467-75.
- 2. Все сварные швы h=5 мм.

Поз.	Наименование	Количест	пво на м	Примечание	
1103.	Пааменооанае	PA3	PA7	PA8	примечиние
	Детали				
	Труба 25 ГОСТ3262-75, L=5000 мм	1	-	-	12,0 кг
1	Труба 25 ГОСТ3262-75, L=5600 мм	-	1	_	13,5 кг
	Труба 25 ГОСТ3262-75, L=6200 мм	-	_	1	14,8 кг
	Стандартные изделия				
2	Фланец, ТУ16-520.151-83	1	1	1	

Поз.	Наименование	Кол-во, шт.	Масса, кг
	Детали		
1	Уголок 50x50x5 ГОСТ8509-86, L=200 мм	1	
2	Штырь SOT24R	1	

SHEDBUK	МЕТАЛЛОКОНСТРУКЦИИ	Стр.
	ХОМУТЫ Х7 и Х8	200

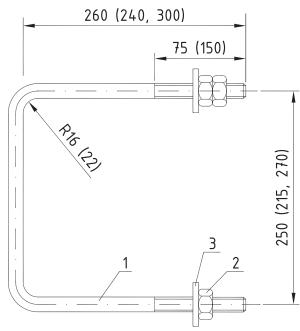
Размеры в скобках даны для хомута X8.


Поз.	Наименование	Количество	Примонанно	
	паименооание	X7	X8	Примечание
	Детали			
1	Круг d12 ГОСТ2590-88, L=720 мм	1	_	0,7 кг
'	Круг d12 ГОСТ2590-88, L=800 мм	-	1	0,8 кг
2	Гайка М12, ГОСТ5915-70	3	3	<u>-</u>
3	Шаūба 12, ГОСТ11371-78	2	2	-

МЕТАЛЛОКОНСТРУКЦИИ

Стр. 207

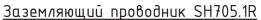
ХОМУТЫ *Х1, Х3, Х51, Х512*

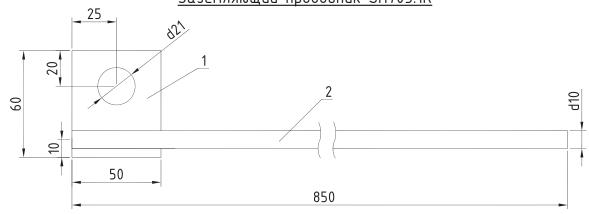

Хомуты Х51 (Х1)

Размер в скобках дан для хомута X1

Поз.	Наименование	Кол.	Кол.		Применание
1103.	пиименоойние	X51	X1	Примечание	
	Детали				
1	Круг d16 ГОСТ2590-88, L=660 мм	1	-	1,04 кг	
'	Круг d16 ГОСТ2590-88, L=680 мм	_	1	1,11 кг	
2	Γαῦκα Μ16, ΓΟСТ5915-70	3	3	0,06	

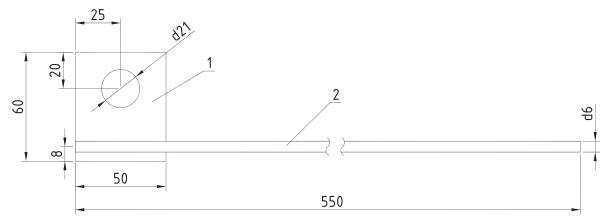
Хомуты ХЗ (Х42, Х512)

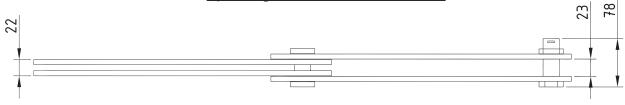

Размеры в скобках даны для хомутов X42 и X512.

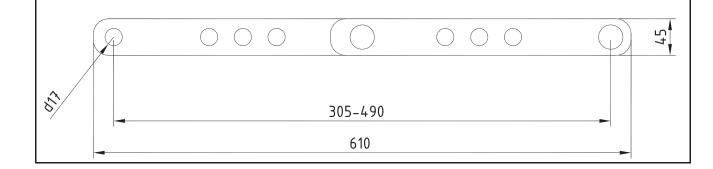

Поз.	Наименование	K	Соличеств	Примечание	
1103.	Hadrienoodhde	X3	X42	X512	примениние
	Детали				
	Круг d16 ГОСТ2590-88, L=660 мм	1	-	1	1,3 кг
	Круг d20 ГОСТ2590-88, L=922 мм	-	1	-	2,32 кг
2	Гайка М16, ГОСТ5915-70	3	-	3	1,2 кг
	Гайка М20, ГОСТ5915-70	-	3	-	0,063 кг
2	Шαūδα 16, ΓΟCT11371-78	2	-	2	-
	Шαūδα 20, ΓΟCT11371-78	-	2	_	0,023 кг

МЕТАЛЛОКОНСТРУКЦИИ

Стр. 208

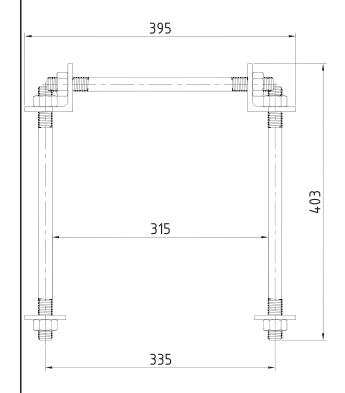

ЗАЗЕМЛЯЮЩИЕ ПРОВОДНИКИ *SH705.1R*, *SH705R*. ЗВЕНО *ПРР-12-1*

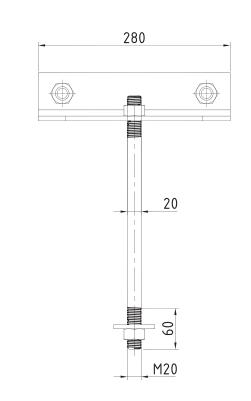

Поз.	Наименование	Кол-во, шт.	Масса, г	
	Детали	1071-00, ШП.		
1	Пластина PPS516, 5x50	1	104	
2	Стальной стержень PPS1281, d=10 мм, L=850 мм	1	520	

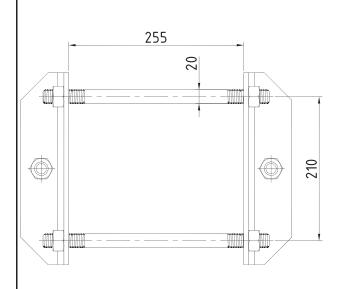

<u>Заземляющий проводник SH705R</u>

Поз.	Наименование	Кол-во, шт.	Масса, г		
	Детали	1 1071-00, Will.	riacca, e		
1	Пластина PPS516, 5x50	1	- 226		
2	Стальной стержень PPS1270, d=6 мм, L=550 мм	1			

Промежуточное звено ПРР-12-1

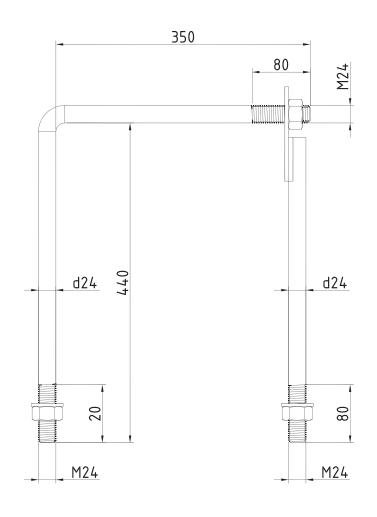


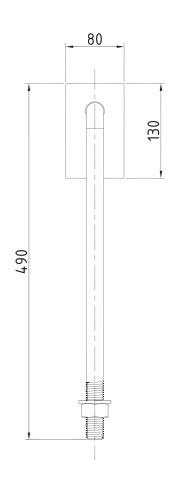

МЕТАЛЛОКОНСТРУКЦИИ

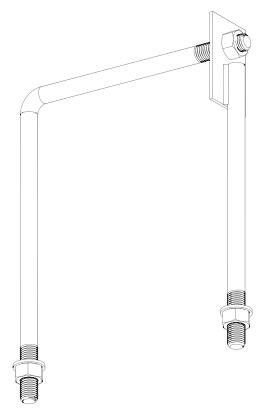

СТЯЖКА *SH702R*

Стр.

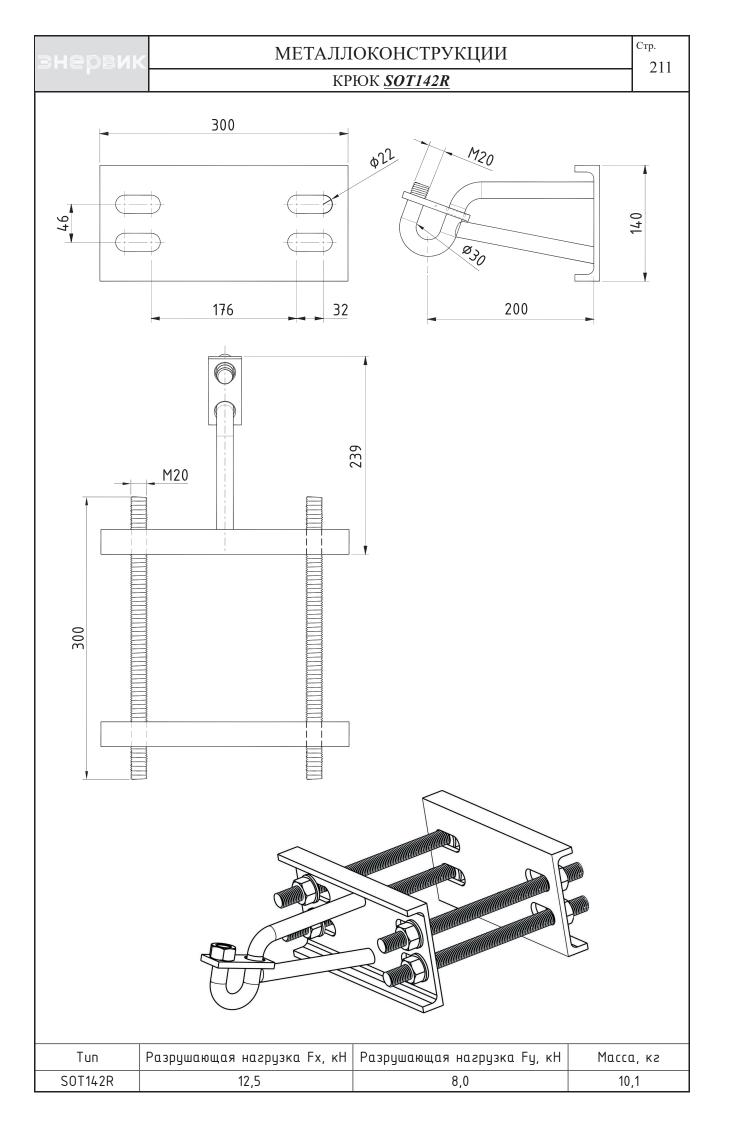
209

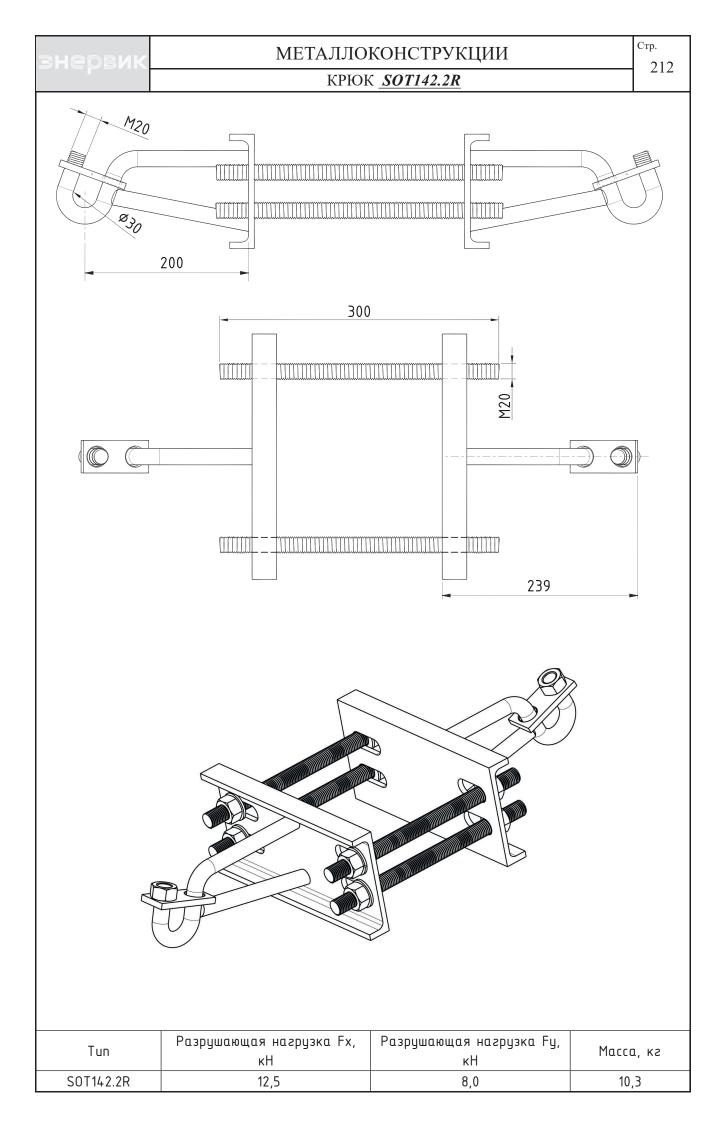

Стяжка SH702R применяется для стоек CB95 и CB110.

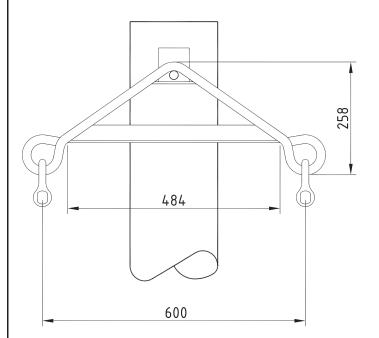

МЕТАЛЛОКОНСТРУКЦИИ

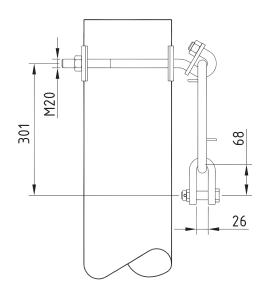

СТЯЖКА *SH703R*

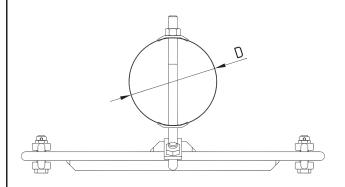
Стр.





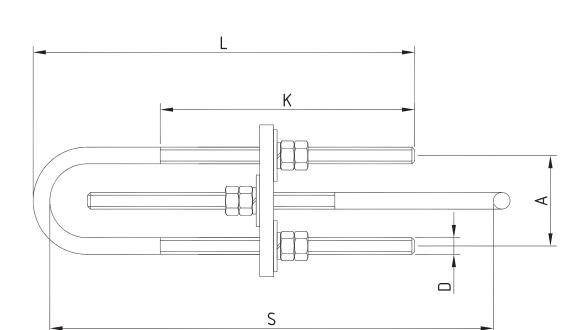

Стяжка SH703R применяется для стоек CB105.

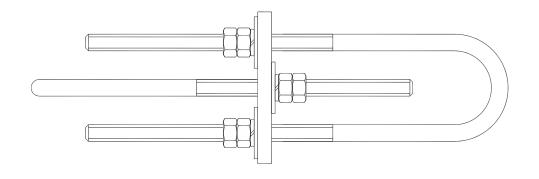




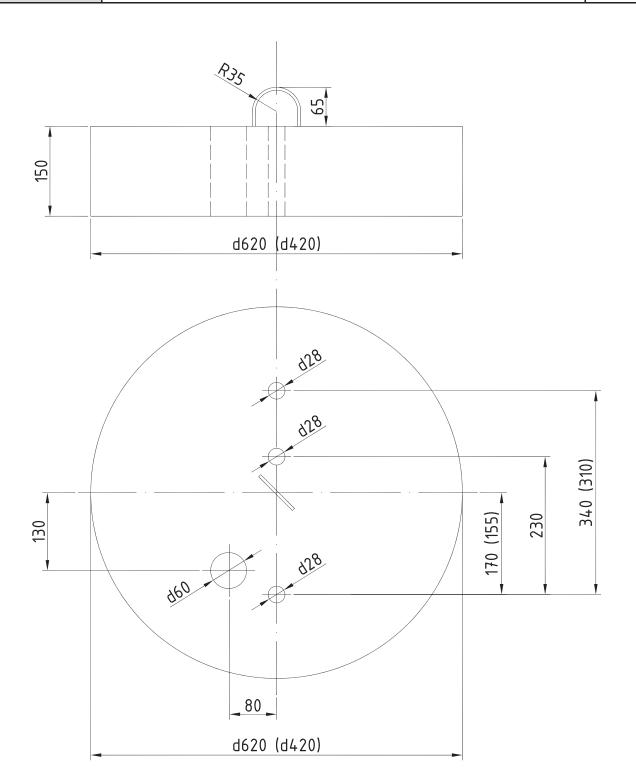
Стр. 213

КОРОМЫСЛА *SOT73R*, *SOT73.1R*





Tun	Длина крюка, мм	Марка крюка	Диаметр, мм	Масса, г	
SOT73R	210	S0T101.1R	145-225	7200	
S0T73.1R	310	S0T101.2R	175-285	7500	

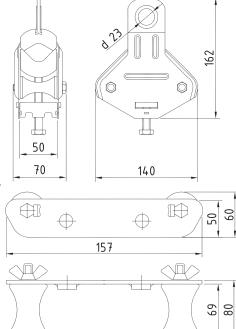

214

Tun	D, мм	S, MM	L, mm	К, мм	А, мм	Масса, г
S0155.1	M16	300÷490	300	200	50	2450

ОПОРНО-АНКЕРНЫЕ ПЛИТЫ Π -3 μ , Π -4

		Расход стали на плиту, кг			Расход бетона, м³
Марка	Масса,	Арматура класса			
плиты	K2	B-I	A-I	Общий расход	Бетон класса прочности В25
		ГОСТ6727-80	ГОСТ5781-82	,	
		D5	D8		
П–3и	110	1,93	0.22	2,2	0,05
П-4	50	0,82	0,23		0,02

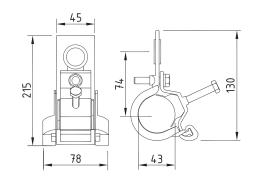
Часть X Подбор арматуры КВЛ 10 - 20 кВ


Стр.

ПОДДЕРЖИВАЮЩИЕ ЗАЖИМЫ

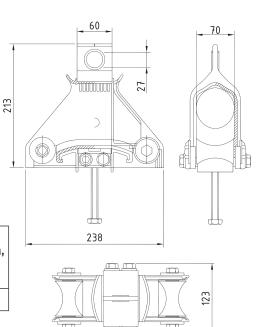
Поддерживающий зажим **SO99** и роликовая тележка **ST26.99**

Используется для крепления универсального кабеля EXCEL и FXCEL на промежуточных и на угловых промежуточных опорах (при углах поворота трассы до 30^{0}). Если угол поворота трассы больше 30^{0} , то рекомендуется дополнительно применять роликовую тележку ST26.99. Поддерживающий зажим, может применятся для раскатки кабеля, в случае применения, после раскатки, кабель закрепляется в зажиме с необходимым усилием.


Тип	Усилие затяжки, Н·м	Диаметр кабеля, мм	Масса, г	Упаковка, шт.
SO99	12	18-39	825	10
ST26.99		18-37	2300	1

Поддерживающий зажим SO130 (SO130.02)

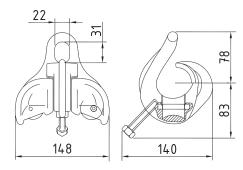
Используется для крепления универсального кабеля EXCEL, FXCEL и AXCES $^{\text{TM}}$ на промежуточных и на угловых промежуточных опорах (при углах поворота трассы до 30°).


Тип	МРН, кН	Диаметр кабеля, мм	Масса, г	Упаковка, шт.
SO130	18	12-42	294	25
SO130.02	18	12-42	310	25

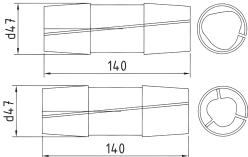
Поддерживающий зажим **SO150**

Используется для креления универсального кабеля EXCEL, FXCEL и AXCES $^{\text{TM}}$ на промежуточных и на угловых промежуточных опорах (при углах поворота трассы до 30°) в зависимости от нормированного радиуса изгиба и натяжного усилия на кабель. Поддерживающий зажим, может применятся для раскатки кабеля, в случае применения, после раскатки кабель закрепляется в зажиме с необходимым усилием.

Тип	Усилие затяжки, Н·м	Диаметр кабеля, мм	Разру- шающая нагрузка, кН	Масса, г	Упаковка, шт.
SO150	25	30-70	30	2200	4


180

Стр. 218


ПОДДЕРЖИВАЮЩИЕ ЗАЖИМЫ

Поддерживающий зажим **SO86** и вставка **PK143**

Используется для креления универсального кабеля EXCEL, FXCEL и AXCESTM на промежуточных и на угловых промежуточных опорах, при использовании одного зажима, угол поворота трассы производится до 30° , в случае применения двух зажимов совместно с кормыслом SOT73R, угол поворота можно произвести до 90°). Для защиты оболочки кабеля рекомендуется применять зажим с резиновыми вставками PK143.

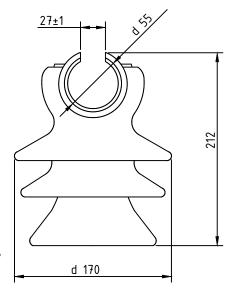
Тип	Момент затяжки, Н∙м	Диаметр кабеля, мм	Разру- шающая нагрузка, кН	Macca, г	Упаковка, шт.	
SO86	15	28-37	38	910	10	
PK143.12	-	-	-	140	100	
PK143.24	-	-	-	70	100	

Спиральные вязки **PLP**

Используется для креления универсального кабеля EXCEL, FXCEL и $AXCES^{TM}$ на анкерных и на угловых анкерных опорах.

Тип	Марка кабеля	Длина, мм	Цветовая маркировка	Масса, г
PLP120	EXCEL 3x10/10-10	1200	зеленая	
PLP125	FXCEL 3x16/10-10	1250	черная	
PLP130	EXCEL 3x10/10-20 FXCEL 3x16/10-20	1300	красная	2410
PLP180	AXCEL 3x70/16-10	1800	оранжевая	6060
PLP200	AXCES 3x70/16-20 AXCES 3x95/25-20	1950	синяя	

ИЗОЛЯТОРЫ

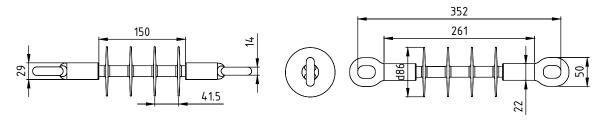

<u>Штыревые фарфоровые изоляторы SDI37</u>

Используются с защищенными и неизолированными проводами на ВЛ напряжением до 24 кВ. Длина пути утечки 325 мм. Диаметр шейки 85 мм. <u>Преимущества</u>:

- В верхней части изолятора в желоб между двумя уступами установлена пластмассовая втулка, в которую при монтаже укладывают провод;
- Такая конструкция позволяет обходиться без монтажных роликов, что сокращает время монтажа и уменьшает его стоимость.

Особенности:

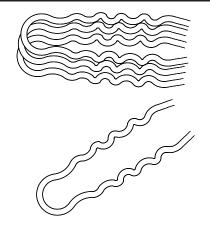
• После раскатки провод должен быть закреплен на промежуточных опорах в желобе или на шейке изолятора, на угловых промежуточных - только на шейке.


Стр.

219

Тип	Длина пути утечки, мм	Разрущающая нагрузка, кН	Тип штыря	Диаметр шейки изолятора, мм	Масса, г	Количество в упаковке, шт.
SDI37	325	12,5	SOT24R	85	3370	3

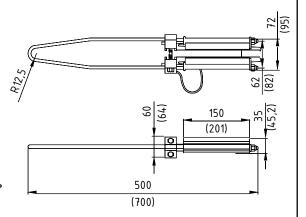
<u>Натяжные полимерные изоляторы SDI90</u>


Изоляторы серии SDI90.150R используются на линиях напряжением 10 кВ, серии SDI90.280 (SDI90.282, SDI90.284, SDI90.288) на линиях напряжением до 20 кВ.

Тип	Длина пути утечки, мм	Механическая прочность, кН	Номинальное напряжение, кВ	Тип оконцевателей	Macca, г	Количество в упаковке, шт.
SDI90.150R	390	70	10	проушина/ проушина	995	3
SDI90.280	613	70	20	проушина/ проушина	1080	3
SDI90.282	613	70	20	гнездо/ проушина	1300	3
SDI90.284	613	70	20	проушина двухлапчатая/ проушина	1300	3
SDI90.288	613	70	20	гнездо/ проушина	1300	3

Спиральные вязки CO, SO115 (SO216)

Используются с защищенными проводами для их закрепление на штыревых изоляторах SDI37 могут монтироваться на изоляторах как в одну, так и в обе стороны провода. Устанавливаются без инструмента поверх изоляции защищенного провода. В комплекте 6 шт. спиральных вязок (один комплект на одну опору). Нужный размер вязок легко определить по цветовой маркировке. Вязки могут применяться при монтаже неизолированных проводов.


Тип	Сечение защи- щенного провода, мм²	Диаметр шейки изолятора, мм	Цветовая маркировка	Масса, г	Количество в упаковке/ комплект
CO35	35-50	85	Желтый	527	25/6
CO70	70-95	85	Зеленый	650	25/6
CO120	120-150	85	Черный	710	25/6
SO115.5073	35-50-62	73	Желтый	633	25/6
SO115.9573	70-95-99	73	Зеленый	570	25/6
SO115.5085	35-50-62	85	Красный	550	25/6
SO115.9585	70 - 95 - 99	85	Синий	617	25/6
SO115.150	120 - 150 - 157	73 - 85	Белый	665	25/6
SO216.62	62	73 - 85	Белый	630	25/6
SO216.99	99	73 - 85	Красный	687	25/6
SO216.157	157	73 - 85	Голубой	801	25/6
SO216.241	241	85	Желтый	1600	25/6

Количество комплектов в коробке - 25 шт.

В одном комплекте - 6 штук спиральных вязок.

Натяжные клиновые зажимы SO255, SO256

Натяжные зажимы SO255 и SO256 используют для анкерного крепления защищённых проводов. Зажим легко монтируется на проводах, так как не требует снятия изоляции. Прокалывающие элементы зажима выводят потенциал провода на корпус зажима и исключают возникновение радиопомех и частичных разрядов. Наличие прокалывающих элементов позволяет монтировать на зажиме дугозащитное устройство.

Тип	Сечение провода, мм²	Момент затяжки, кН	Разрушающая нагрузка, кН	Адаптер для крюка лебедки	Масса, г	Количество в упаковке, шт.
SO255	35 - 70	40	18	-	1133	9
SO255.2	35 - 70	40	18	+	1250	9
SO255.3	35 - 70	40	18	-	1503	9
SO256	95 - 150	40	30	-	2530	3
SO256.2	95 - 150	40	30	+	2790	3
SO256.3	95 - 150	40	30	-	3033	3

3H C DBNK	ВЫБОР АРМАТУРЫ	Стр.
	КАБЕЛЬНЫЕ МУФТЫ И НАКОНЕЧНИКИ	221

Концевые муфты для наружной установки НОТИЗ.1201, НОТИЗ.2401, НОТИЗ.2402

Муфты марки HOTU3 применяются для наружной установки. Марки муфт с буквой L комлектуется кабельными наконечниками со срывными головками.

Тип	Номинальное напряжение, кВ	Марка кабеля	Сечение жилы, мм²	Диаметр юбки, мм	Длина муфты, мм	Кол-во юбок на фазе	Количество в упаковке, шт.
HOTU3.1201	6 (12)	EXCEL/ FXCEL	10-16		500 - 1100		1
HOTU3.2401	12/24	EXCEL/ FXCEL	10-16	90	500 - 1100	3	1
HOTU3.2402	12/24	AXCES	70-95	90	500 - 1100	3	1
С наконечникам							
HOTU3.1201L	6/12	EXCEL/ FXCEL	10-16		500-1100		1

Концевые муфты для внутренней установки **HITU3**

Муфты марки HITU3 применяются для внутренней установки. Марки муфт с буквой L комлектуется кабельными наконечниками со срывными головками.

Тип	Номинальное напряжение, кВ	Марка кабеля	Сечение жилы, мм²	Диаметр юбки, мм	Длина муфты, мм	Кол-во юбок на фазе	Количество в упаковке, шт.
HITU3.1201	6 (12)	EXCEL/ FXCEL	10-16		500 - 1100		1
HITU3.2401	12/24	EXCEL/ FXCEL	10-16	90	500 - 1100	1	1
HITU3.2402	12/24	AXCES	70-95	90	500 - 1100	1	1
С наконечникам	ии (диаметр отв	верстия на	онечника	- 13 мм)			
HITU3.1201L	6/12	EXCEL/ FXCEL	10-16		500 - 1100		1
HITU3.2401L	12/24	EXCEL/ FXCEL	10-16	90	500 - 1100	1	1

Соединительные муфты НЈИ33

Соединительные муфты HITU3 для универсальных кабелей EXCEL, FXCEL и AXCES . Комплекты соединительных муфт поставляются без соединителей.

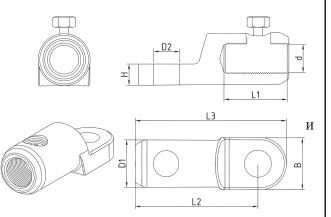
Тип	Номинальное напряжение, кВ	Марка кабеля	Сечение кабеля	Длина	Масса, г
HIU33.2401C	12/24	EXCEL/FXCEL	10-16	1500	2536
HIU33.2402C	12/24	AXCES	70-95	1700	3441

Соединители C-EXCEL и C-AXCES

Комплекты соединителей для универсальных кабелей EXCEL, FXCEL и AXCES. Комплекты сосотоят из трех прессуемых соединителей для фазных жил и один соединитель со срывными головками для экрана кабеля.

Тип	Номинальное напряжение, кВ	Марка кабеля	Сечение кабеля	Матрица	Масса, г
C-EXCEL	12/24	EXCEL/FXCEL	10-16	ST120.8Cu	139
C-AXCES	12/24	AXCES	70-95	ST120.8AI	274

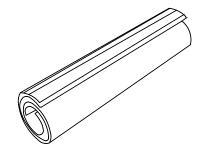
Стр.


222

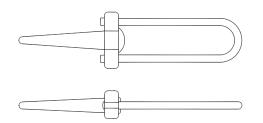
ВЫБОР АРМАТУРЫ

КАБЕЛЬНЫЕ МУФТЫ

Кабельные наконечники **SML**


Используются для подключения алюминиевых или медных проводников к шинам распределительных щитов. Наконечники изготовлены из коррозионностойкого алюминиевого сплава покрыты оловом. Для получения надежного контакта необходимо затягивать болты до срыва головки.

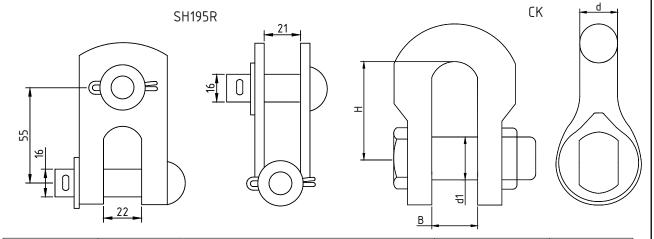
Тип	Сечение жилы, мм²	L ₁ ,	L ₂ ,	L ₃ ,	В, мм	d, мм	D1, мм	D2, мм	Н, мм	Macca, г
SML1.17	Al/Cu 10-95	32	59,5	74	26	14	26	13	10	95
SML1.172	Al/Cu 10-95	32	59,5	74	26	14	26	17	10	95
SML2.27	Al/Cu 70-240	57	103	119	34	20	34	13	14	280
SML2.272	Al/Cu 70-240	57	103	119	34	20	34	17	14	275


Защитный кожух

Защитный кожух используется для механической защиты изоляции фазных жил кабеля. Изготовлен из пластмассы, стойкой к атмосферным осадкам и ультрафиолетовому излучению. Длина защитного кожуха не менее 225 мм.

Анкерный автоматический зажим COL52

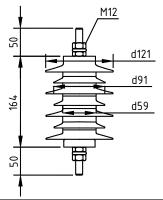
Применяется для выполнения анкерного крепления стального троса. Зажим - надежный и быстромонтируемый для линий среднего напряжения. Для монтажа инструмент не требуется, разрывное усилие COL52 - 68,4 кН.


Тип	Сечение троса, мм²	Диаметр троса, мм	Масса, г	Количество в упаковке, шт
COL52	52	8,29 - 9,96	563	1

Стр. 223

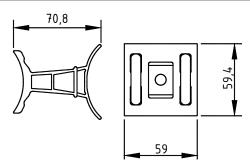
СКОБЫ.ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ.

Скобы SH195R и СК


Скобы типа SH195R, СК предназначены для перехода с шарнирного цепного соединения на соединение типа "палец-проушина", изменения расположения оси шарнирности, сцепления арматуры, рассчитанной на разные нагрузки.

T		Размер	ы, мм		Разрущающая	Magaz KE
Тип	В	Н	d	d1	нагрузка, кН	Масса, кг
CK-12-1A	23	65	18	22	120	0,91
CK-16-1A	26	70	20	25	160	1,22

<u>Ограничитель перенапряжения *HE-S*</u>

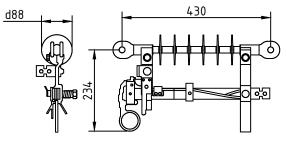

Предназначены для защиты трансформаторов, выключателей и линий от атмосферных и коммутационных перенапряжений.

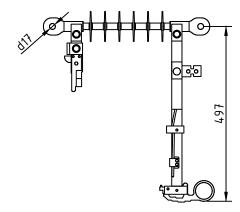
Тип	Номинальный раязрядный ток, кА	Hапряджение, U₀/U(Uм)	Масса, г	Количество в упаковке, шт.
HE-S09SGA	10	3,6 / 6 /(7,2)	1300	1
HE-S12SGA	10	6 / 10 (12)	1300	1
HE-S18SGA	10	8,7 / 15 (17,5)	1700	1
HE-S24SGA	10	12 / 20 (24)	2100	1

<u>Дистанционный бандаж \$075.100</u>

Используется для крепления кабеля на опорах при помощи болтов, шурупов или бандажной ленты со скрепой. Для фиксации кабеля, бандаж оснащен стальными ремешками, покрытыми краской

Тип	Диаметр проводов, мм	Просвет, мм	Масса, г	Количество в упаковке, шт.
SO75.100	45 -100	50	105	15

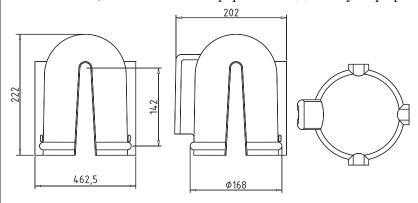

ЛИНЕЙНЫЙ РАЗЪЕДИНИТЕЛЬ


224

Линейный разъединитель **SZ24**

Линейный разъединитель служит для отключения ВЛЗ 6-20 кВ без нагрузки (создания видимого разрыва) при проведении ремонтных работ и оперативных переключений. Может устанавливаться вначале ВЛЗ у питающей подстанции, в местах соединения с кабельными линиями и на ответвлениях от магистрали. Операции с линейным разъединителем проводятся с помощью оперативной изолирующей штанги СТ48.64. Разъединитель снабжён шинными зажимами для подключения проводов ВЛ. Возможно применение линейного разъединителя как совместно с натяжным изолятором, так и отдельно (с двумя анкерными зажимами).

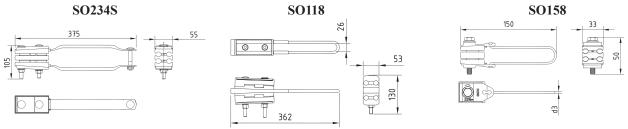
Ток отключения с преобладающей активной нагрузкой - 12,5 А. Ток отключения для воздушных сетей - 10 А. Ток отключения для сетей с кабельными вставками - 10 А.



Тип	Номинальное напряжение, кВ	Номинальный ток, А	Ток 1-сек. КЗ, кА	Длина пути утечки, мм	Масса, г	Количество в упаковке, шт.
SZ24	до 20 кВ	400	10	628	3200	3

Комплект защиты от птиц **SP36.3**

Применяется для изоляторов, вводов и ОПН с диаметром 100-180 мм. Комплект изготовлен из пластмасы, стойкой к атмосферным осадкам и ультрафиолетовому излучению.

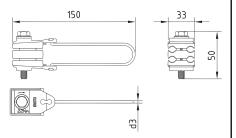


Тип	Масса, г	Комплектация	Количество в упаковке, комплект
SP36.3	450	Один комплект включает в себя три кожуха и три ремешка для монтажа.	6

Часть XI Подбор арматуры ВЛИ 0,4 кВ

1. Натяжные зажимы

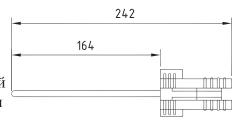
Натяжные анкерные зажимы для трёхфазной линии SO234S, SO118



Тип	Количество и сечение проводов, мм²	Диаметр провода, мм	МРН, кН	Вес, г	Упаковка, шт.
SO234S	4x50/4x70/4x95/4x120	10,8-16,7	27/37/37/37	1300	10
SO274	4x25/4x35/4x50	7,0-10,2	13/17,8/25	1000	10
SO274S	4x25/4x35/4x50	7,0-10,2	13/17,8/25	1000	10
SO275	4x(50-70)	11,6-13,2	25/36	1200	10
SO275S	4x(50-70)	11,6-13,2	25/36	1200	10
SO118.1201S	4x50/4x70/4x95/4x120	10,8-16,7	23/33/35/35	1200	10
SO118.1202S	4x50/4x70/4x95/4x120	10,8-16,7	27/35/35/35	1380	10
SO117.50952S	4x50/4x70/4x95	10,8-15,8	16,6/23/23	1350	10

S – наличие срывной головки.

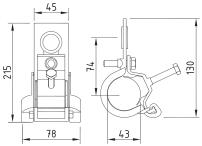
Натяжные зажимы для абонентских ответвлениях


Используются для крепления проводов на ответвлениях к вводам. Преимущество — не требует снятия изоляции. Конструктивная особенность — при монтаже требуется применение динамометрического ключа.

Тип	Количество и сечение проводов, мм²	Момент затяжки болтов, Нм	Диаметр провода, мм	МРН, кН	Macca, г	Упаковка, шт.
SO158.1	4x16/25/35	22	7,0 - 10,2	5,5/8,75/11,2	85	50
SO80	4x16/4x25	-	7,0 - 9,0	6,8/8,75	230	50
SO80S	4x(16-35)	-	7,0 – 10,2	8/10/12	230	50
SO118.425	4x25/4x35	-	8,4-9,2	14,5/20	450	25
SO157.1	2x16/25/35	22	7,0 - 10,2	3,4/6,2/7,2	75	50
SO80.225	2x16/2x25	-	7,0 - 9,0	3,4/5,4	200	50
SO80.235S	2x(16-35)	-	7,0 – 10,2	2,5/5,4	200	9
SO169.22550	2x25/2x50		8,4-11,9	2,0/4,0	220	50
SO34.250	2x50		10,4	15,2	235	15

Анкерный зажим **SO243**

Зажим используется для крепления абонентских ответвлений. Зажим легкий и не имеет разбираемых частей во время монтажа. Зажима изготовлен из атмосферостойкой пластмассы. Преимущество – не требует снятия изоляции и применения ключей.



Тип	Сечение проводов, мм²	Диаметр провода, мм	МРН, кН	Вес, г	Упаковка, шт.
SO243	2-4 x (6-25)	5,3-9,1	2	70	50

2. Поддерживающие зажимы

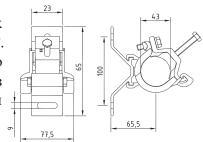
Поддерживающие зажимы **SO130**, **SO136**, **SO270**

Зажим SO99 укомплектован монтажными роликами для раскатки проводов при угле поворота линии менее 30°. Для больших углов поворота использовать приставку с роликами – тип ST26.99.

Тип	Количество и сечение проводов, мм²	Угол поворота трассы	Наличие барашка	МРН, кН	Bec, г	Упаковка, шт.
SO270	2x25/4x35; 4x50/4x70	до 30; до 15°	есть	7	150	50
SO239	2÷4x(6-25)	до 30°	5,0-9,0	15,2	130	50
SO130	2÷4x(25-50); 2÷4x(25-120)	до 60°; до 30°	нет	18	300	25
SO130.02	2÷4x(25-50); 2÷4x(25-120)	до 60°; до 30°	есть	18	310	25
SO136	2÷4x(25-120)	до 90°	нет	40	730	10
SO136.02	2÷4x(25-120)	до 90°	есть	40	745	10
SO99	4x(25-50); 4x95	до 90°; до 60°	Нет	5,7	825	10

Приставка с роликами для зажима \$099

Тип	Диаметр проводов, мм	Сечение проводов, мм²	Масса, г	Упаковка, шт.
ST26.99	18-39	4x(25-95)	2300	10

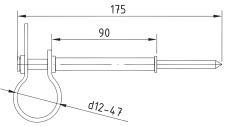

Поддерживающий зажим **SO119** для крепления провода на тросе

Поддерживающий зажим для крепления двухжильного или четырехжильного провода СИП на несущем стальном тросе. Применяется на прямых участках линии освещения.

Тип	MM		Диаметр провода, мм	Момент затяжки, Н·М	Вес, г	Упаковка, шт.
SO119	6	4x16/4x25	4-6,3	20	120	50

Поддерживающие зажимы **SO125**

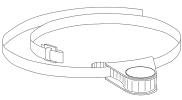
Используются для монтажа проводов на бетонных, кирпичных или деревянных стенах по прямой линии или под углом 30°. Зажим SO125.1 является настенным зажимом без монтажного кронштейна. Его можно использовать вместе с пластиной из алюминиевого сплава или стали горячей оцинковки размером 6х40 мм.


Тип	Сечение проводов, мм ²	Поставка	Масса, г	Уп-ка шт.
SO125	4x(16-120)	Полный комплект	330	25
SO125.1	4x(16-120)	Без кронштейна	250	25
SO125.02	4x(16-120)	Полный комплект, снабжен болтом с барашком	350	25

Стр. 228

ПОДДЕРЖИВАЮЩИЕ ЗАЖИМЫ

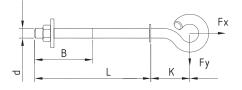
Поддерживающие дистанционные фиксаторы **SO**


Используются для крепления самонесущих проводов и кабелей на железобетонных и деревянных стенах, а также на деревянных опорах. Фиксаторы предотвращают прикосновение проводов или кабелей к поверхности стен или опор. Рекомендованные интервалы между фиксаторами при горизонтальной прокладке $-0.75\,\mathrm{m}$, при вертикальной прокладке $-1\,\mathrm{m}$.

Тип	Диаметр провода, мм²	Расстояние от поверхности, мм	Крепление	Использование	Macca, г	Упаковка, шт.
SO70.11	12-47	40	Гвозди	Дерево	35	50/250
SO70.16	12-47	40	Ø6,7х120 винт	Дерево	45	50/250
SO70.17	12-47	40	Ø6x120 винт	Бетон/Кирпич	55	50/250
SO71	12-47	90	180 Гвоздь	Деревянная стена, опора	51	25/100
SO71.3	12-47	90	Шуруп 7х160/50	Деревянная стена, опора	60	25/100
SO71.1		Перфориро	ванная лента		10	25/100
SO72.	27-32	-	Ø5x50 винт	Дерево	20	50
SO72.2	27-32	-	Ø5x50 винт	Бетон	22	50
SO76	12-47	60		Только корпус и перфолента	17	25/100
SO76.11	12-47	60	5,5х145 гвоздь	Деревянные поверхности	47	25/100
SO76.19	12-47	60	5,5х145 гвоз- дь, 10х50 дюб.	Твердые поверхности	60	25/100

<u>Дистанционный бандаж **SO79.**</u>□

Используется для крепления кабелей на железобетонных или металлических опорах при помощи металлической ленты.



Тип	Диаметр провода, мм²	Расстояние от поверхности, мм	Бандаж, мм	Масса, г	Упаковка, шт.
SO79.1	45	25	1000	180	50
SO79.5	45	25	нет	65	50
SO79.6	45	25	1300	200	55

3. Металлоконструкции

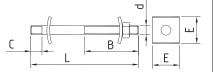
<u>Крюки для стоек с отверстиями **SOT21.**</u>

Используются для подвески поддерживающих или натяжных зажимов на деревянных, железобетонных или металлических опорах.

Тип	Класс d		В, К, мм	L, мм		я разрушающая грузка	Macca,	Упаковка,		
				ММ			Fx, кН	Fу, кH	'	шт.
SOT21.16R	2	M16	120	80	200	11,9	2,4	780	20	

Стр.

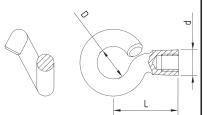
МЕТАЛЛОКОНСТРУКЦИИ


229

Продолжение таблицы

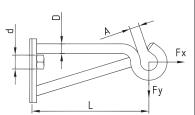
								¬	
SOT21.116R	2	M16	120	80	240	11,9	2,4	840	20
SOT21.216R	2	M16	120	80	320	11,9	2,4	970	20
SOT21.0R	3	M20	120	80	200	14,5	4,6	1580	20
SOT21.1R	3	M20	120	80	240	14,5	4,6	1320	20
SOT21.2R	3	M20	120	80	320	14,5	4,6	1510	20
SOT21.3R	3	M20	120	80	350	14,5	4,6	1580	20
SOT101.1R	3	M20	110	70	250	30,6	6,7	1700	10
SOT101.2R	3	M20	140	70	310	30,6	6,7	1800	10

<u>Двухсторонние болты **SOT4.**□**R**</u>


Используются для монтажа крюкообразных гаек типа PD.

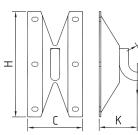
Тип	Класс	d	С,	В,	Е, М м	L, мм	Macca, г	Упаковка, шт.
SOT4.8R	2	M16	25	120	60	240	500	20
SOT4.9R	2	M16	25	120	60	280	610	20
SOT4.10R	2	M16	25	120	60	360	690	20
SOT4.5R	2	M20	25	120	60	240	600	20
SOT4.6R	2	M20	25	120	60	280	720	20
SOT4.7R	2	M20	25	120	60	360	870	20

Крюки накручивающиеся PD2.3R, PD2.2R


Используются совместно с крюками типа SOT21. \square R или проходными болтами типа SOT4. \square R для подвески поддерживающих или натяжных зажимов при выполнении ответвлений к вводам или двухцепной линии.

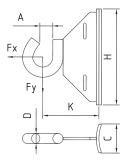
Тип	Класс	Класс d		L,	разруша	Минимальная разрушающая нагрузка		Упаковка, шт.	
					Fx, кН	Fy, кH			
PD2.3R	2	M16	38	76	15,4	2,0	383	25	
PD2.2R	3	M20	38	76	15,5	4,0	550	25	

Крюки дистанционные **PD3.3R**, **PD3.2R**


Используются на угловых опорах для обеспечения необходимого расстояния между проводом и опорой.

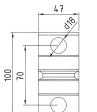
Тип	Класс	d	D, мм	L, MM	А	Минимальная разрушающая нагрузка		Macca, г	Упаковка, шт.
						Fx, кH	Fу, кH		
PD3.3R	2	M16	16	206	20	9,7	6,2	1500	10
PD3.2R	3	M20	20	200	20	13,3	8,6	1900	10

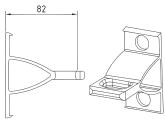
Крюк универсальный **SOT76R**


Крюк SOT76R является универсальным и может монтироваться на железобетонных опорах с помощью бандажной ленты типа = COT37.2R а на стенах зданий и сооружений при помощи шурупов.

Тип	D, мм	К,	С,	Н,	разруц	альная цающая рузка Fy, кН	Комплектация	Использование	Bec, г	Уп-ка, шт.
SOT76R	16	67	96	200	17,4	13,3	Крюк		610	25
SOT76.2R	16	67	96	200	17,4	13,3	6 шурупов 6,7х160/60	Дерево	785	25

Крюки бандажные **SOT29.10R** и **SOT39R**


Монтируются на металлических или железобетонных опорах при помощи бандажной ленты типа COT37.2R и скреп COT36.2R, верхний и нижний бандаж выполняется в два витка на опорах анкерного типа. Крюки имеют дополнительное отверстие для подсоединения проводника заземления.



Тип	D, мм	А, мм	К, мм	С, мм	Н, мм	Минима разруш нагр	ающая	Вес, г	Упаковка, шт.
						Fx, кH	Fу, кH		
SOT29.10R	16	18	86	50	150	17,8	12,5	710	25
SOT39R	20	18	91	45	150	27,7	17,7	740	25

Кронштейн универсальный **SO253R**

Универсальные кронштейны монтируются на опоры с помощью бандажной ленты и скрепы или на стену при в помощи болтов.

Тип	Минимальная разрушающая нагрузка, кН	Масса, г	Упаковка, шт.
SO253R	22	110	25

SHEDBAK	ВЫБОР АРМАТУРЫ	Стр.
	МЕТАЛЛОКОНСТРУКЦИИ	231

Лента бандажная стальная и скрепа **COT37.2R, COT36.2R**

Применяются для крепления крюков или кронштейнов SOT29.10R, SOT39R, SOT76R, SO253R, SO279R на железобетонных и металлических опорах, так же может применяться для крепления заземляющего спуска к стойке опоры. Бандажная лента СОТ37 и скрепа СОТ36, изготовлены из нержавеющей стали. При монтаже ВЛИ на магистрали верхний и нижний бандаж выполняется в два витка. Для наложения требуется приспособление СТ42.

Тип	Описание Размеры		Подбор для одного крюка (1 комплект)			Масса,	Упаковка,
тип Описание	Размеры	Кол-во, м	Кол-во витков	Допустимая нагрузка, кН	г	шт.	
COT37.2R	Стальная	льная	2,6	2 x 1	≤7,840	115 г/м	25 м
лен	лента	0,75 x 19	5,2	2 x 2	≤15,680	1131/M	
COT36.2R	Скрепа	-	2 шт		-	15 г/шт	100 шт.

4. Пластиковые изделия

<u>Бандажные ремешки **PER15**</u>

Тип	Длина бандажа, мм	Ширина бандажа, мм	Толщина бандажа, мм	D – max ди- аметр пучка проводов , мм	Допустимые нагрузки, Н	Вес, кг	Упаковка, шт.
PER15	300	4,7	1,3	1,5 - 85	355	0,21	100
PER15.210	210	4,7	1,3	1,5 - 55	355	0,153	100
PER15.390	390	4,7	1,3	1,5 - 110	355	0,252	100
PER15.387	387	7,6	1,8	3,0 - 100	535	0,580	100
PER15.760	760	7,6	1,8	5,0 - 225	535	0,575	50
PER15.390C	390	7,6	1,8	15 - 110	535	0,252	50

Защитные колпачки для проводов РК99, РК553 и РК554

Колпачки заполнены защитной смазкой и надеваются на концы проводников для предотвращения проникновения влаги в жилу проводника.

Тип Номинальное сечение провода, мм²		Диаметр проводов, мм	Упаковка, шт.
PK99.025	16–25	7-9,4	1/1000
PK99.2595	16–95 (120)	8,4-18	12/300
PK553	4,0 – 13,0	4-50	120
PK555	8,0 - 19,0	25-150	120

SHEDBUK	ВЫБОР АРМАТУРЫ	Стр. 232
	СОЕДИНИТЕЛЬНЫЕ ЗАЖИМЫ	232

Защитные кожуха для плашечных зажимов **SP14** (**SP15**, **SP16**)

Применяются на ответвительных (соединительных) зажимах в целях предотвращения возможности прикосновения к токоведущим частям и для защиты от коррозии. Защитные кожуха устанавливаются отверстием для водяного конденсата вниз.

Тип	Тип зажима	Максимальное сечение провода, мм²	Вес, г	Упаковка, шт.
SP14	SM1.11, SL2.11	50	13	10/100
SP15	SM2.11, SM2.21, SL4.21, SL37.1, SL37.2, SL39.2	120	30	10/100
SP16	SM4.2, SL8.2, SLW25.2	185	67	5/50

5. Соединительные зажимы

Прессуемые соединительные зажимы **\$J9.**□**R**

Зажимы используются для соединения алюминиевых проводников опрессовкой.

Тип	Сечение провода, мм²	Матрицы (размер)	Цвет концов	Упаковка, шт.
SJ9.16	16/16	E140	Голубой	
SJ9.25	25/25	E173	Оранжевый	10
SJ9.35	35/35	E173	Красный	10
SJ9.50	50/50	E173	Жёлтый	10
SJ9.70	70/70	E173	Белый	10
SJ9.95	95/95	E215	Серый	10
SJ9.120	120/120	E215	Розовый	10
SJ9.150	150/150	E215	Фиолетовый	10

Автоматические соединительные зажимы **CIL**

Применяются для соединения проводников:

- неизолированных (*CIL63*, *CIL64*, *CIL65*, *CIL71*);
- изолированных (CIL66, CIL67, CIL68, CIL69, CIL106, CIL107, CIL108, CIL109, CIL110).

Концы соединяемых жил должны быть зачищены. Автоматические соединительные зажимы надежны и легко монтируются без применения дополнительных инструментов.

Комплекты *CIL66, CIL67, CIL68, CIL69* включают автоматический соединительный зажим, изолирующую термоусаживаемую трубку и абразивную бумагу.

Комплекты *CIL106*, *CIL107*, *CIL108*, *CIL109* включают автоматический соединительный зажим, две трубки холодной усадки, мастики, силиконовой смазки и ПВХ-ленты.

Тип	Сечение проводов, мм²	Диаметр проводов без изоляции, мм	Цвет	Вес, г	Упаковка, шт.
CIL63	25 – 50	5,8-8,6	Оранжевый / красный	150	1/25
CIL64	70 – 95	9,3-12,1	Жёлтый / серый	280	1/25
CIL65	120 – 150	12,8-14,9	Розовый / чёрный	480	1/25
CIL71	185 - 240	14,7 - 18,4	Зеленый / коричневый	840	1
CIL66	25 – 50	5,8 - 8,6	Оранжевый / красный	260	1/25
CIL67	70 – 95	9,3 – 12,1	Жёлтый / серый	470	1/25
CIL68	120 – 150	12,8 – 14,9	Розовый / чёрный	790	1/25
CIL69	185 – 240	14,7 – 18,4	Зеленый / коричневый	850	1/20
CIL106	25 – 50	5,8 - 8,6	Оранжевый / красный	260	1/12
CIL107	70 – 95	9,2 - 12,0	Жёлтый / серый	470	1/12
CIL108	120 – 150	12,8 – 14,9	Розовый / чёрный	790	1/12
CIL109	185 – 240	14,7 – 18,4	Зеленый / коричневый	850	1/12
CIL110	300	18,8 - 21,7	Голубой	1950	1/12

233

Стр.

СОЕДИНИТЕЛЬНЫЕ ЗАЖИМЫ

6. Ответвительные (соединительные) зажимы

Ответвительные (соединительные) плашечные зажимы SL37, SL4.25 (SL4.26)

Особенности зажимов:

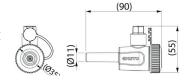
- SL37.1 имеет один болт, SL37.2 имеет два болта;
- SL2.11, SL4.21 и SL8.21 очищены и смазаны, поставляется в полиэтиленовых пакетах;
- SL4.25 имеет подпружиненную верхнюю плашку.

Тип	Сечение п	ровода, мм²	Момент затяжки,	Масса,	Упаковка,
I MIII	Магистрали	Ответвления	Нм	г	шт.
SL37.1	6-95 AI	6-95 AI	22	55	200
SL37.2	6-95 AI	6-95 AI	22	100	50
SL37.27	10-95 Al/Cu	6-95 Al/Cu	22	100	50
SL39.2	16-150 AI	16-150 AI	22	120	50
SL2.11	16 – 50 Al	16 – 50 AI	20	52	200
SL4.25	16 – 120 AI	16 – 120 AI,	20	125	50
SL4.26	16 –120 Al/Cu	16 – 120 Al, 16-95 Cu	20	125	50
SL8.21	50 – 240 AI	50 – 240 AI	44	280	25
SL37.201	10-95	10-95	22	100	50

<u>Кабельные наконечники с болтами со срывной головкой **LUG**</u>

Используются для подключения алюминиевых или медных проводников к шинам распределительных щитов. Наконечники изготовлены из коррозионностойкого алюминиевого сплава и покрыты оловом. Для получения надежного контакта необходимо затягивать болты до срыва головки.

Тип	Сечение, мм	Диаметр, мм	Диаметр проводов, мм	Вес, г	Количество в упаковке, шт.
LUG6-50/8LVTIN	6 - 50	8,5	3-10	39	100
LUG6-50/12LVTIN	6 - 50	12,5	3-10	38	100
LUG50-95/10LVTIN	50 - 95	10,5	7-15	87	100
LUG50-95/14LVTIN	50 - 95	14,5	7-15	79	100
LUG95-185/12LVTIN	95 - 185	12,5	10-19	141	50
LUG95-185/16LVTIN	95 - 185	16,5	10-19	135	50


Ответвительные прокалывающие зажимы для нескольких присоединений **SLIW66, SLIW67**

Зажимы используются для подключения нескольких ответвлений в одной точке, применяются с зажимами SLIP22.1, SLIW56, SLIW57, SLIW58, SLIP32.2, SL24. Зажим SLIW66 позволяет подключать до двух ответвлений в одной точке, SLIW67 – до четырёх.

Тип	Зажим магистрали	Ответвительный провод, сечение, мм²	Момент затяжки, Нм	Масса, г	Упаковка, шт.
SLIW66	SLIP22.1, SLIP32.2 SLIW57, SLIW58	2x(6-35) Al/ Cu	10±1	103	40
SLIW67	SLIP22.1, SLIP32.2 SLIW57, SLIW58	4x(6-35) Al/ Cu	10±1	198	20

Зажим для многократного подключения SLIW65 (SLIW65S)

Предназначены для многократного - отключения проводника абонентского ответвления, совместимы с прокалывающими зажимами SLIW54, SLIW57, SLIW58, SLIP22.1, SLIP32.2. Зажимы SLIW65S оснащен болтом со срывной головкой.

Тип	Сечение отпайки, мм²	Диаметр проводов	Масса, г	Упаковка, шт.
SLIW65	2,5-35 Al/Cu	3,5-18,6 Al / 3,5-10,9 Cu	52	60
SLIW65S	2,5-35 Al/Cu	3,5-18,6 Al / 3,5-10,9 Cu	52	60

СОЕДИНИТЕЛЬНЫЕ И ОТВЕТВИТЕЛЬНЫЕ ЗАЖИМЫ

234

Прокалывающие зажимы **SLIP**

Особенности зажимов:

- SLIP22.1 предназначены для соединения изолированныхалюминиевых или медных проводов; имеют изолирующий водозащитный корпус из термопластика; срывную головку, изолированную от металлических плашек; позволяет выполнять подключение ответвления под напряжением;
- SLIP22.127 то же, что и SLIP22.1, но предназначены для соединения неизолированных алюминиевых проводов с изолированными алюминиевыми проводами, крышка изолирующего корпуса серая;
- SLIP22.127 то же, что и SLIP22.1, но предназначены для соединения неизолированных алюминиевых или медных проводов с изолированными алюминиевыми или медными проводами.

T	Сечение про	вода, мм²	Диаметр проводов		Масса,	Упаковка,
Тип	Магистрали	Ответвления	магистраль отпайка		г	шт.
SLIP22.1	10 – 95 Al 1,5 – 70 Cu	10 – 95 Al 1,5 – 70 Cu	3 - 16	6	124	50
SLIP22.127	25 – 95 Al 25 – 70 Cu не изолированный	2,5 – 95 Al 1,5 – 70 Cu	6,5 - 13	3 - 16	120	50
SLIP12.1	10 – 95 Al/Cu	1,5 – 50 Al/Cu	3 - 16		108	50
SLIP12.127	10 – 70 Al/ Cu не изолированный	1,5 – 50 Al/Cu	3 - 12,1		108	50
SLIP32.2	P32 2 16-150 Al/ Cii	16 – 120 Al 16 – 95 Cu	7 - 19	7 - 19	150	50
SLIP32.21	16-150 Al/ Cu неизолированный	16 – 120 Al 16 – 95 Cu	7-19	7-19	150	50
SL9.21	16 – 120 AI	16 – 95 Al	7-18	4,6-12	150	50

Герметичные прокалывающие зажимы **SLIW50**

Зажимы серии SLIW50 предназначены для соединения изолированных алюминиевых или медных проводов, применяются:

- для подключения светильников уличного освещения;
- для подключения абонентских ответвлений;
- для соединения проводов в петле опор анкерного типа;

Зажимы позволяют выполнять подключение ответвления под напряжением.

Тип	Сечение провода, мм²		Диаметр п	роводов	Масса,	Упаковка,
іип	Магистрали	Ответвления	магистраль	отпайка	г	шт.
SLIW50	10 – 50 Al/Cu	1,5 – 10 Cu,10 Al	6,1 - 12,5	3,0 - 7,0	50	120
SLIW52	10 – 150 Al/Cu	1,5 – 16 Al/Cu	7,0 - 18,6	3,0 - 7,8	62	20
SLIW54	16 – 120 Al/Cu	6 – 50 Al/Cu	7,0 - 17,6	4,0 - 12,1	85	60
SLIW56	25 – 150 Al/Cu	6 – 35 Al/Cu	8,0 - 18,6	4,0 - 10,9	75	60
SLIW57	25 – 150 Al/Cu	25 – 95Al/Cu	8,4 - 18,5	8,4 - 15,2	113	60
SLIW58	50 – 150 Al/Cu	50 – 150 Al/Cu	12,5 - 18,5	12,5 - 18,5	139	60

235

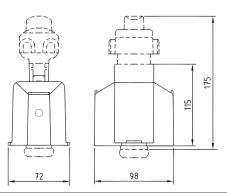
энервик

ОРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ

7. Защитные устройства

Ограничители перенапряжений с прокалывающими зажимами **SE45** и **SE46**

Серия SE45 разработана специально для линии с изолированными проводниками. Прокалывающий зажим не может использоваться как ответвительный, т.к. рассчитан только на один изолированный алюминиевый или медный проводник сечением 10-150 мм².


		ОПН					
Тип	Сечение проводов, мм²	Наибольшее рабочее напряжение, В	Ток, кА	Энергоемкость, кДж	Вес, г	Упаковка, шт.	
SE45.275-15	10 – 150	275/350	15	2,45	220	15	
SE45.440-15	10 - 150	440/585	15	3,2	220	15	
SE45.690-15	10 - 150	690/910	15	3,96	220	15	

Серия SE46 снабжена прокалывающими зажимами серии SLIP, которые могут использоваться для организации ответвлений алюминиевым или медным проводником сечением 1,5 - 95 мм².

Тип	Сечение проводов, мм ²	ОПН Энергоемкость, Вес.		Poo r	Упаковка,	
IMII	Al - Cu	Напряжение, В	Ток, кА	кДж	Bec, i	шт.
SE46.275-15	1,5 - 95 Al/Cu	275/350	15	2,45	220	15
SE46.440-15	1,5 - 95 Al/Cu	440/585	15	3,2	220	15
SE46.690-15	1,5 - 95 Al/Cu	690/910	15	3,96	220	15

Патроны для предохранителей SV29.25, SV29.63

Используются для подключения и защиты малых потребителей или светильников уличного освещения. Применяются вместе с прокалывающими зажимами SLIP22.1, SLIP12.1. Плавкие вставки в комплект не входят, поставляются отделно.

Тип	Плавкие вставки	Масса, г	Упаковка, шт.
SV29.25	(ПВД II 25 A)	230	1/10
SV29.63	(ПВД III 63 A)	384	1/10

Комплекты клеммников для сетей уличного освещения SV50 и SV15

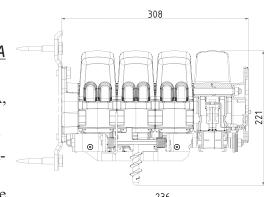
Применяются для соединения алюминиевых и медных проводников:

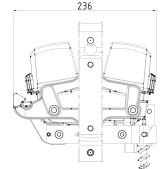
- комплект клеммников SV50 включает три клеммника KE10.504, один клеммник KE10.506, заземляющий проводник 16 мм длиной 0,35 м.
- комплект *SV15* включает три клеммника KE10.1, один клеммник KE10.3, заземляющий проводник 16 мм длиной 0,35 м.
- комплект *SV15.12* включает комплект SV15 и автоматический выключатель SVV3.

ПОДБОР АРМАТУРЫ

Стр. 236

МАЧТОВЫЕ РУБИЛЬНИКИ


8. Мачтовые рубильники


Мачтовые рубильники на номинальный ток 160А

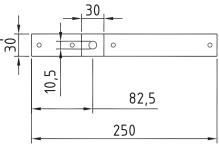
Мачтовые рубильники на номинальные токи до 160 A, рассчитаны на плавкие вставки типа ППН-33 габарит 00 на токи от 6 до 160 A. Плавкие вставки в комплект рубильника не входят. Все рубильники оснащены плашечными зажимами заводской комплектации.

Мачтовые рубильники новой серии имеют следующие преимущества:

- удобство и безопасность монтажа;
- надежность крепления;
- отдельные защитные кожуха для каждого зажима;
- пригодны для тяжелых условий эксплуатации;
- усовершенствованный механизм фиксации во включенном положении;
- лазерная маркировка;

	Кол-во		Зажимы	Massa	Количество
Тип	полюсов	Кол-во и марка	Кол-во, сечение и материал провода	Macca, г	в упаковке, шт.
SZ160.1	1	2 x KG45	2 x (16-120 мм²) AL/Cu	1800	2
SZ160.3	3	6 x KG45.5	2 x (16-120 мм²) AL/ Cu	3700	1
SZ160.32	3 + PEN	7 x KG45.5	2 x (16-120 мм²) AL/ Cu	3700	1
SZ160.4	4	8 x KG45.5	2 x (16-120 мм²) AL/ Cu	4800	1
SZ160.41	4 (N - постоянно включен)	8 x KG45.5	2 x (16-120 мм²) AL /Cu	4800	1

<u>Шина для крепления табличек **PEM216R**</u>


Шина используются для крепления табличек с обозначени-одими плавких вставок и номеров фидеров.

Шина изготовлена из алюминия.

Размеры шины, мм: 250х30х3;

Упаковка, шт: 10/320

Вес, (кг); 0,120

Таблички с обозначением номинальных токов **РЕМ242.**□**R**

Таблички выполнены на алюминиевой основе и имеют двусторонние пластиковые номера. Высота табличек 40 мм. Варианты табличек от 25 A до 400 A.

PEM242.25R (25 A) PEM242.400R (400 A).

<u>Таблички с обозначением номеров фидеров **РЕМ241.**□**R**_</u>

Таблички выполнены на алюминиевой основе и имеют двусторонние пластиковые номера. Высота табличек 40 мм. Варианты табличек от №1 до №9.

PEM241.1R (№1) PEM241.9R (№9).

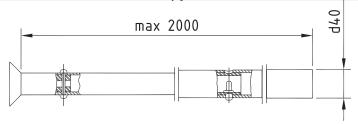
знервик

ПОДБОР АРМАТУРЫ

МАЧТОВЫЕ РУБИЛЬНИКИ

Стр.

237


Таблички для мачтовых рубильников с предохранителями

Тип	Описание	Размеры	Macca, г
PEM216R	Шина для крепления табличек	250x30x3	120
PEM242.25R = 25 A, PEM242.400R = 400 A	Табличка «Ток предохранителя»	145x60x1,5	18
PEM241.1R = No. 1, PEM241.6R = No. 6	Табличка «Номер цепи»	65x60x1,5	6

Монтажная рейка для крепления рубильников

Тип	Номинальный ток рубильника	Масса, г	Упаковка, шт.
DEK40D	160 A	1400	1
PEK49R	400 A	1400	1

<u>Изолированные штанги для мачтовых рубильников ST19, ST33</u>

Тип	Длина, м	Масса, г	Упаковка
ST19	1	360	1
ST33	2*	1000	1

^{*} Транспортная длина штанги 1,3 м.

SHEDBNK	ВЫБОР АРМАТУРЫ	Стр.
	КАБЕЛЬНЫЕ МУФТЫ	230

9. Кабельные муфты на напряжение до 1 кВ

<u>Концевые муфты **STK**</u>

Термоусаживаемая концевая муфта STK. Комплект концевых муфт применяется для 3-х и 4-х жильных силовых кабелей напряжением до 1 кВ без брони с алюминиевыми или медными жилами с пластмассовой изоляцией.

Тип	Сечение кабеля, мм²	Комплектность	Количество в упаковке
STK1.27	Al/Cu 35-50	с наконечниками	1
STK3.27	Al/Cu 70-185	с наконечниками	1
STK4.27	Al/Cu 185-300	с наконечниками	1
STKR1	Al/Cu 35-50	без наконечников	1
STKR3	Al/Cu 70-185	без наконечников	1
STKR4	Al/Cu 185-300	без наконечников	1

Комплекты кабельных соединительных зажимов **SJK**

Комплекты кабельных соединительных зажимов используются для соединения проводников СИП с кабелем без брони с пластмассовой изоляцией с алюминиевыми или медными жилами. Кабельные соединительные зажимы включают: 4 соединителя с болтами со срывными головками; 4 термоусаживаемые изолированные трубки; 1 внешнюю термоусаживаемую трубку и 1 держатель зажимов.

Тип	Сечение кабеля, мм²	Масса, г	Количество в упаковке
SJK0C	6-25 Al/Cu	257	8
SJK1C	10-50 Al/Cu	747	10
SJK2C	50-95 Al/Cu	1553	1
SJK3C	95-240 Al/Cu	1770	1
SJK4C	150-300 Al/Cu	2825	1

ЛИТЕРАТУРА

Стр. 239

Литература

- 1. Правила устройства электроустановок. Раздел 2. Передача электроэнергии. Главы 2.4, 2.5. 7-е изд. М.: НЦ ЭНАС, 2003. 160 с.; ил.
- 2. СНиП 2.02.01-83 "Основания зданий и сооружений".
- 3. Руководство по проектированию опор и фундаментов линий электропередачи и распределительных устройств подстанций напряжением выше 1 кВ. (Энергосетьпроект, №3041 тм, 1977).
- 4. Проект повторного применения 3.407-150 "Заземляющие устройства опор ВЛ 0,38, 6, 10, 20 и 35 кВ".
- 5. СНиП III-4-80 и "Правилам техники безопасности при производстве электромонтажных работ на объектах Минтопэнерго".
- 6. Деревянные опоры ВЛ 10-20 кВ с подвеской воздушного кабеля и с совместной подвеской самонесущих изолированных проводов СИП-4 с линейной арматурой компании ENSTO. Шифр 25.0092 - филиал ОАО «РОСЭП».
- 7. Справочник "Универсальные кабели EXCEL 3x10/10 мм², FXCEL 3x16/10 мм², AXCES 3x70/16 mm², AXCES 3x70/25 mm², AXCES 3x95/25 mm², nkt cables, 2001r.
- 8. Руководство по универсальным кабелям, EXCEL 3x10/10 мм², FXCEL 3x16/10 мм², AXCES 3x70/16 мм², AXCES 3x70/25 мм², AXCES 3x95/25 мм², ERICSSON, 2005г.Одноцепные железобетонные опоры ВЛ 0,4 кВ с самонесущими изолированными проводами. Арх. № ЛЭП98.08. – ОАО «НТЦ электроэнергетики" - РОСЭП.
- 9. Двухцепные железобетонные опоры ВЛ 0,4 кВ с самонесущими изолированными проводами. Арх. № ЛЭП98.10. – ОАО «НТЦ электроэнергетики" - РОСЭП.
- 10. Переходные железобетонные опоры ВЛИ 0,4 кВ с самонесущими изолированными проводами. Арх. № 19.0022.1 – ОАО «РОСЭП».
- 11. Методические указания по защите распределительных электрических сетей напряжением 0,4 - 10 кВ от грозовых перенапряжений. ОАО "РОСЭП", 2004г.
- 12. Евдокунин Г., Дмитриев М. Универсальный самонесущий кабель. Заземление экранов и троса // Новости ЭлектроТехники. 2010. 1(61).
- 13. Железобетонные опоры для совместной подвески защищенных проводов ВЛ 10 кВ и самонесущих изолированных проводов одноцепной ВЛ 0,4 кВ. Шифр 19.0157 - ОАО "РОСЭП".
- 14. Железобетонные опоры для совместной подвески защищенных проводов ВЛ 10 кВ и самонесущих изолированных проводов одноцепной ВЛ 0,4 кВ. Шифр 20.0027 - ОАО "РОСЭП".

Обложка

Обложка

OOO «ЭНЕРВИК»
198205, Санкт-Петербург
Таллинское шоссе, 206
тел.: +7 (812) 325 93 40
факс: +7 (812) 325 93 41

105062, Москва Подсосенский пер., д. 20, стр. 1 тел.: +7 (495) 258 52 70

тел.: +7 (495) 258 52 70 факс: +7 (495) 258 52 69 690002, Владивосток ул. Комсомольская, д.3, оф.310

тел.: +7 (423) 276 55 31 факс: +7 (423) 240 29 61 630054, Новосибирск ул. Крашенинникова, 3/1, оф. 511

тел.: +7 913 705 2513